OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 11, Iss. 3 — Mar. 1, 1994
  • pp: 963–983

Coupled-mode theory for optical waveguides: an overview

Wei-Ping Huang  »View Author Affiliations


JOSA A, Vol. 11, Issue 3, pp. 963-983 (1994)
http://dx.doi.org/10.1364/JOSAA.11.000963


View Full Text Article

Enhanced HTML    Acrobat PDF (2563 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The coupled-mode theory (CMT) for optical waveguides is reviewed, with emphasis on the analysis of coupled optical waveguides. A brief account of the recent development of the CMT for coupled optical waveguides is given. Issues raised in the debates of the 1980’s on the merits and shortcomings of the conventional as well as the improved coupled-mode formulations are discussed. The conventional coupled-mode formulations are set up in a simple, intuitive way. The rigorous CMT is established on the basis of a linear superposition of the modes for individual waveguides. The cross-power terms appear logically as a result of modal nonorthogonality. The cross power is necessary for the self-consistency of the CMT for dissimilar waveguides. The nonorthogonal CMT, though more complicated, yields more-accurate results than the conventional orthogonal CMT for most practical applications. It also leads to the prediction of cross talk in directional couplers. The conventional orthogonal CMT is, however, reliably accurate for describing the power coupling between two weakly coupled, nearly identical waveguides. For dissimilar waveguides, a self-consistent orthogonal CMT can be derived by a redefinition of the coupling coefficients, and it predicts the coupling length and therefore the power exchange between the waveguides accurately if the two waveguides are far apart. Three typical coupler configurations—the uniform, the grating-assisted, and the tapered—are examined in detail. The accuracy, scope of validity, limitations, and extensions of the coupled-mode formulations are discussed in conjunction with each configuration. To verify the arguments in the discussions, comparisons with the exact analytical solutions and the rigorous numerical simulations are made.

© 1994 Optical Society of America

Citation
Wei-Ping Huang, "Coupled-mode theory for optical waveguides: an overview," J. Opt. Soc. Am. A 11, 963-983 (1994)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-11-3-963


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Haus and W. P. Huang, "Coupled-mode theory," Proc. IEEE 79, 1505–1518 (1991). [CrossRef]
  2. D. L. Lee, Electromagnetic Principle of Integrated Optics (Wiley, New York, 1986).
  3. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991).
  4. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  5. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J. 1984).
  6. T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, New York, 1988). [CrossRef]
  7. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989).
  9. J. R. Pierce, "Coupling of modes of propagation," J. Appl. Phys. 25, 179–183 (1954). [CrossRef]
  10. S. E. Miller, "Coupled wave theory and waveguide applications," Bell Syst. Tech. J. 33, 661–719 (1954).
  11. S. A. Schelkunoff, "Conversion of Maxwell's equations into generalized telegraphist's equations," Bell Syst. Tech. J. 34, 995–1043 (1955).
  12. H. A. Haus, "Electron beam waves in microwave tubes," in Proceedings of the Symposium on Eectronic Waveguides (Polytechnic Institute of Brooklyn, Brooklyn, N.Y., 1958).
  13. A. W. Snyder, "Coupled-mode theory for optical fibers," J. Opt. Soc. Am. 62, 1267–1277 (1972). [CrossRef]
  14. D. Marcuse, "Coupled mode theory of round optical fibers," Bell Syst. Tech. J. 52, 817–842 (1973).
  15. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919–933 (1973). [CrossRef]
  16. H. Kogelnik, "Theory of dielectric waveguides," in Integrated Optics, T. Tamir, ed. (Springer-Verlag, New York, 1975), Chap. 2. [CrossRef]
  17. H. Kogelnik, "Switched directional couplers with alternating Δ,β," IEEE J. Quantum Electron. QE-12, 396–401 (1976). [CrossRef]
  18. H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  19. A. Hardy and W. Streifer, "Coupled-mode theory of parallel waveguides," J. Lightwave Technol. LT-3, 1135–1146 (1985). [CrossRef]
  20. H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, "Coupled mode theory of optical waveguides," J. Lightwave Technol. LT-5, 16–23 (1987). [CrossRef]
  21. S. L. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. LT-5, 5–15 (1987). [CrossRef]
  22. W. Streifer, M. Osinski, and A. Hardy, "Reformulation of coupled-mode theory of multiwaveguide systems," J. Lightwave Technol. LT-5, 1–4 (1987). [CrossRef]
  23. C. Vassello, "About coupled-mode theories for dielectric waveguides," J. Lightwave Technol. 6, 294–303 (1988). [CrossRef]
  24. A. W. Snyder and A. Ankiewicz, "Fibre couplers composed of unequal cores," Electron. Lett. 22, 1237–1238 (1988). [CrossRef]
  25. A. W. Snyder, A. Ankiewicz, and A. Altintas, "Fundamental error of recent coupled mode formulations," Electron. Lett. 23, 1097–1098 (1987). [CrossRef]
  26. W. Streifer, "Coupled mode theory," Electron. Lett. 23, 216–217 (1987). [CrossRef]
  27. W. Streifer, "Comment on 'Fundamental error of recent coupled mode formulations,'" Electron. Lett. 22, 718–719 (1988). [CrossRef]
  28. A. W. Snyder, A. Ankiewicz, and A. Altintas, "Coupled modem theory neglects polarization phenomena" (reply to Ref. 26), Electron. Lett. 22, 720–721 (1988). [CrossRef]
  29. W. Streifer, M. Osinski, and A. Hardy, "A critical review of coupled mode theory," in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 835, 178 (1987). [CrossRef]
  30. A. Hardy, W. Streifer, and M. Osinski, "Weak coupling of parallel waveguides," Opt. Lett. 13, 162–163; erratum, 428 (1988).
  31. Y. Wu, "Discussion of HS formulation using equivalent current theory," Electron. Lett. 24, 376–377 (1988). [CrossRef]
  32. Z. H. Wang and S. R. Seshadri, "Asymptotic theory of guided modes in two parallel, identical dielectric waveguides," J. Opt. Soc. Am. A 5, 782–792 (1988). [CrossRef]
  33. A. Ankiewicz, A. Altintas, and A. W. Snyder, "Polarization properties of evanescent couplers," Opt. Lett. 13, 524–525 (1988). [CrossRef] [PubMed]
  34. A. W. Snyder, Y. Chen, and A. Ankiewicz, "Coupled waves on optical fibers by power conservation," J. Lightwave Technol. 7, 1400–1406 (1989). [CrossRef]
  35. H. A. Haus, W. P. Huang, and A. W. Snyder, "Coupled-mode formulations," Opt. Lett. 14, 1222–1224 (1989). [CrossRef] [PubMed]
  36. C. Vassallo, "Condensed formula for coupling coefficients between parallel dielectric waveguides," Electron. Lett. 23, 304–306 (1986).
  37. E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron. QE-22, 988–993 (1986). [CrossRef]
  38. A. W. Snyder, "Optical fiber couplers—optimum solution for unequal cores," J. Lightwave Technol. 6, 463–474 (1988). [CrossRef]
  39. R. R. A. Syms and R. G. Peall, "Explanation of asymmetric switch response of three-arm directional couplers in Ti:LiNbO3 using strong coupling theory," Opt. Commun. 66, 260–264 (1988). [CrossRef]
  40. W. P. Huang and S. K. Chaudhuri, "Variational coupled-mode theory of optical couplers," J. Lightwave Technol. 8, 1565–1570 (1990). [CrossRef]
  41. W. P. Huang, S. T. Chu, and S. K. Chaudhuri, "A scalar coupled-mode theory with vector correction," J. Quantum Electron. 28, 184–193 (1992). [CrossRef]
  42. A. Hardy and W. Streifer, "Coupled modes of multiwaveguide systems and phased arrays," J. Lightwave Technol. LT-4, 90–99 (1986). [CrossRef]
  43. S. L. Chuang, "A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation," J. Lightwave Technol. LT-5, 174–183 (1987). [CrossRef]
  44. A. Hardy and W. Streifer, "Analysis of phased-array diode lasers," Opt. Lett. 10, 335–337 (1985). [CrossRef] [PubMed]
  45. A. Hardy and W. Streifer, "Coupled-mode solutions of multiwaveguide systems," IEEE J. Quantum Electron. QE-22, 528–534 (1986). [CrossRef]
  46. Y. Shama, A. Hardy, and E. Marom, "Multimode coupling of unidentical waveguides," J. Lightwave Technol. 7, 420–425 (1989). [CrossRef]
  47. A. Hardy, W. Streifer, and M. Osinski, "Coupled-mode equations for multimode waveguide systems in isotropic or anisotropic media," Opt. Lett. 11, 742–744 (1986). [CrossRef] [PubMed]
  48. F. Tian, Y. Z. Wu, and P. A. Ye, "Improved coupled-mode theory for anisotropic waveguide modulators," IEEE J. Quantum Electron. 24, 531–536 (1988). [CrossRef]
  49. L. Tsang and S. L. Chuang, "Improved coupled-mode theory for reciprocal anisotropic waveguides," J. Lightwave Technol. 6, 304–311 (1988). [CrossRef]
  50. W. P. Huang and H. A. Haus, "Power exchange in grating-assisted couplers," J. Lightwave Technol. 7, 920–924 (1989). [CrossRef]
  51. W. P. Huang, B. E. Little, and S. K. Chaudhuri, "A new approach to grating-assisted couplers," J. Lightwave Technol. 9, 721–727 (1991). [CrossRef]
  52. W. P. Huang and W. Y. Lit, "Nonorthogonal coupled-mode theory of grating-assisted codirectional couplers," J. Lightwave Technol. 9, 845–852 (1991). [CrossRef]
  53. B. E. Little, W. P. Huang, and S. K. Chaudhuri, "A multiplescale analysis of grating-assisted couplers," J. Lightwave Technol. 10, 1254–1263 (1992).
  54. G. Griffle, M. Itzkovich, and A. A. Hardy, "Coupled-mode formulations for directional couplers with longitudinal perturbation," IEEE J. Quantum Electron. 28, 985–994 (1992).
  55. G. Griffle and A. Yariv, "Frequency response and tunability of grating-assisted directional couplers," IEEE J. Quantum Electron. 27, 1115–1118 (1991). [CrossRef]
  56. W. P. Huang, B. E. Little, and C. L. Xu, "On phase-matching and power coupling in grating-assisted couplers," IEEE Photon. Technol. Lett. 4, 151–153 (1992). [CrossRef]
  57. R. R. A. Syms, "Improved coupled-mode theory for codirectionally and contradirectionally coupled waveguide arrays," J. Opt. Soc. Am. A 8, 1062–1069 (1991). [CrossRef]
  58. J. Hong and W. P. Huang, "Contra-directional coupling in grating-assisted guided-wave devices," J. Lightwave Technol. 10, 873–881 (1992). [CrossRef]
  59. A. Hardy, M. Osiński, and W. Streifer, "Application of coupled-mode theory to nearly parallel waveguide systems," Electron. Lett. 22, 1249–1250 (1986). [CrossRef]
  60. R. G. Peall and R. R. A. Syms, "Scalar strong coupled mode theory for slowly-varying waveguide arrays," Opt. Commun. 67, 421–424 (1988). [CrossRef]
  61. H. A. Haus and W. P. Huang, "Mode coupling in tapered structures," J. Lightwave Technol. 7, 729–730 (1989). [CrossRef]
  62. Y. Cai, T. Mizumoto, and Y. Naito, "Analysis of the coupling characteristics of a tapered coupled waveguide system," J. Lightwave Technol. 8, 90–98 (1990). [CrossRef]
  63. W. P. Huang and H. A. Haus, "Self-consistent vector coupled-mode theory for tapered optical waveguides," J. Lightwave Technol. 8, 922–926 (1990). [CrossRef]
  64. W. P. Huang and B. E. Little, "Power exchange in tapered optical couplers," IEEE J. Quantum Electron. 27, 1932–1938 (1992). [CrossRef]
  65. W. P. Huang and S. Lessard, "Wavefront-tilt in nonparallel optical waveguides," J. Lightwave Technol. 10, 316–322 (1992). [CrossRef]
  66. S. Lessard and W. P. Huang, "Assessment of coupled-mode theory for tapered optical coupler," J. Lightwave Technol. 11, 405–407 (1993). [CrossRef]
  67. Y. Chen, "Solutions to full coupled wave equations of nonlinear, coupled systems," IEEE J. Quantum Electron. 25, 2149–2153 (1989). [CrossRef]
  68. S. L. Chuang, "Application of the strongly coupled-mode theory to integrated optical devices," IEEE J. Quantum Electron. QE-23, 499–509 (1987). [CrossRef]
  69. J. P. Donnelly, H. A. Haus, and N. Whitaker, "Symmetric three-guide optical coupler with nonidentical center and outside guides," IEEE J. Quantum Electron. QE-23, 401–406 (1987). [CrossRef]
  70. J. P. Donnelly, L. A. Molter, and H. A. Haus, "The extinction ratio in optical two-guide coupler Δβ switches," IEEE J. Quantum Electron. 25, 924–932 (1989). [CrossRef]
  71. Y. Shama, E. Marom, and A. Hardy, "Analysis of power transfer in nonsymmetric directional couplers," Appl. Opt. 28, 990–994 (1989). [CrossRef] [PubMed]
  72. R. R. A. Syms and R. G. Peall, "The digital optical switch: analogous directional coupler devices," Opt. Commun. 68, 235–238 (1989). [CrossRef]
  73. Y. Tomabechi and K. Matsumura, "Improved analysis for the coupling characteristics of two rectangular dielectric wavegudie laid in different layers," IEEE J. Quantum Electron. 24, 2359–2361 (1988). [CrossRef]
  74. A. Hardy, S. Shakir, and W. Streifer, "Coupled-mode equations for two weakly guiding single-mode fibers," Opt. Lett. 14, 324–336 (1986). [CrossRef]
  75. J. R. Qian, "Generalized coupled-mode equations and applications to fiber couplers," Electron. Lett. 22, 304–306 (1986). [CrossRef]
  76. A. Ankiewicz, A. W. Snyder, and X. Zheng, "Coupling between parallel optical fiber cores—critical exmaination," J. Lightwave Technol. LT-4, 1317–1323 (1986). [CrossRef]
  77. H. S. Huang and H. C. Chang, "Vector coupled-mode analysis of coupling between two identical optical fiber cores," Opt. Lett. 14, 90–92 (1989). [CrossRef] [PubMed]
  78. H. S. Huang and H. C. Chang, "Analytical expressions for the coupling between two optical fiber cores with α-power refractive-index distribution," J. Lightwave Technol. 7, 694–702 (1989). [CrossRef]
  79. H. S. Huang and H. C. Chang, "Analysis of optical fiber directional coupling based on the HE11 modes. Part I: the nonidentical-core," J. Lightwave Technol. 8, 823–831 (1990). [CrossRef]
  80. H. S. Huang and H. C. Chang, "Analysis of optical fiber directional coupling based on the HE11 modes. Part II: the nonidentical-core," J. Lightwave Technol. 8, 832–837 (1990). [CrossRef]
  81. E. A. J. Marcatili, L. L. Buhl, and R. C. Alferness, "Experimental verification of the improved coupled-mode equations," Appl. Phys. Lett. 49, 1692–1693 (1986). [CrossRef]
  82. R. G. Peall and R. R. A. Syms, "Comparison between strong coupling theory and experiment for three-arm directional couplers in Ti:LiNbO3," J. Lightwave Technol. 7, 540–554 (1989). [CrossRef]
  83. H. A. Haus, "Coupled-mode theory revisited," in Fiber Optics, Optoelectronics and Laser Applications in Science and Engineering, Proc. Soc. Photo-Opt. Instrum. Eng. (1986).
  84. J. P. Donnelly, H. A. Haus, and L. A. Molter, "Cross power and crosstalk in waveguide couplers," J. Lightwave Technol. 6, 257–268 (1988). [CrossRef]
  85. K. Chen and S. Wang, "Cross-talk problems in optical directional couplers," Appl. Phys. Lett. 44, 166–168 (1984). [CrossRef]
  86. H. A. Haus and N. A. Whitaker, "Elimination of cross talk in optical directional couplers," Appl. Phys. Lett. 46, 1–3 (1985). [CrossRef]
  87. R. C. Alferness, T. L. Kock, L. L. Buhl, F. Storz, F. Heismann, and M. J. R. Martyak, "Grating assisted InGaAsP/InP vertical co-directional coupler filter," Appl. Phys. Lett. 55, 2011–2013 (1989). [CrossRef]
  88. R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, and C. A. Burrus, "Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range," in Integrated Photonics Research, Vol. 10 of 1992 OSA Technical Digest Series optical Society of America, Washington, D.C., 1992), p. 308.
  89. W. P. Huang, C. L. Xu, S. T. Chu, and S. K. Chaudhuri, "The finite-difference vector beam propagation method: analysis and assessment," J. Lightwave Technol. 10, 295–305 (1992). [CrossRef]
  90. D. Marcuse, "Directional couplers made of nonidentical asymmetrical slabs. Part II: grating-assisted couplers," J. Lightwave Technol. LT-5, 268–273 (1987). [CrossRef]
  91. Y. Chen and A. W. Snyder, "Grating-assisted couplers," Opt. Lett. 16, 217–219 (1991). [CrossRef] [PubMed]
  92. W. P. Huang, J. Hong, and Z. M. Mao, "An improved coupledmode formulation for grating-assisted co-directional couplers," IEEE J. Quantum Electron. (to be published).
  93. D. G. Hall, "Coupled-mode theory for corrugated optical waveguides," Opt. Lett. 15, 619–621 (1990). [CrossRef] [PubMed]
  94. D. Marcuse, "Radiation loss of grating-assisted directional coupler," J. Lightwave Technol. 8, 675–684 (1990).
  95. W. P. Huang and J. Hong, "A transfer matrix approach based on local modes for coupled waveguides with periodic perturbations," J. Lightwave Technol. 10, 1367–1374 (1992). [CrossRef]
  96. J. Willems, J. Haes, R. Baets, G. Sztefka, and H. P. Nolting, "Eigenmode propagation analysis of radiation losses in waveguides with discontinuities and grating-assisted couplers," in Integrated Photonics Research, Vol. 10 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 229.
  97. L. A. Weller-Brophy and D. G. Hall, "Local normal mode analysis of guided mode interactions with waveguide gratings," J. Lightwave Technol. 6, 10699–1082 (1988). [CrossRef]
  98. A. Milton and W. K. Burns, "Mode coupling in tapered optical waveguide structures and electro-optic switches," IEEE Trans. Circ. Syst. CS-26, 1020–1028 (1979). [CrossRef]
  99. R. C. Alferness and P. S. Cross, "Filter characteristics of codirectionally coupled waveguides with weighted coupling," IEEE J. Quantum Electron. QE-14, 843–847 (1978). [CrossRef]
  100. A. W. Snyder, "Surface mode coupling along a tapered dielectric rod," IEEE Trans. Antennas Propag. AP-13, 821–822 (1965). [CrossRef]
  101. A. W. Snyder, "Coupling of modes on a tapered dielectric cylinder," IEEE Trans. Microwave Theor. Technol. MTT-18, 383–392 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited