OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 11, Iss. 3 — Mar. 1, 1994
  • pp: 963–983

Coupled-mode theory for optical waveguides: an overview

Wei-Ping Huang  »View Author Affiliations


JOSA A, Vol. 11, Issue 3, pp. 963-983 (1994)
http://dx.doi.org/10.1364/JOSAA.11.000963


View Full Text Article

Enhanced HTML    Acrobat PDF (2563 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The coupled-mode theory (CMT) for optical waveguides is reviewed, with emphasis on the analysis of coupled optical waveguides. A brief account of the recent development of the CMT for coupled optical waveguides is given. Issues raised in the debates of the 1980’s on the merits and shortcomings of the conventional as well as the improved coupled-mode formulations are discussed. The conventional coupled-mode formulations are set up in a simple, intuitive way. The rigorous CMT is established on the basis of a linear superposition of the modes for individual waveguides. The cross-power terms appear logically as a result of modal nonorthogonality. The cross power is necessary for the self-consistency of the CMT for dissimilar waveguides. The nonorthogonal CMT, though more complicated, yields more-accurate results than the conventional orthogonal CMT for most practical applications. It also leads to the prediction of cross talk in directional couplers. The conventional orthogonal CMT is, however, reliably accurate for describing the power coupling between two weakly coupled, nearly identical waveguides. For dissimilar waveguides, a self-consistent orthogonal CMT can be derived by a redefinition of the coupling coefficients, and it predicts the coupling length and therefore the power exchange between the waveguides accurately if the two waveguides are far apart. Three typical coupler configurations—the uniform, the grating-assisted, and the tapered—are examined in detail. The accuracy, scope of validity, limitations, and extensions of the coupled-mode formulations are discussed in conjunction with each configuration. To verify the arguments in the discussions, comparisons with the exact analytical solutions and the rigorous numerical simulations are made.

© 1994 Optical Society of America

History
Original Manuscript: October 23, 1992
Revised Manuscript: August 10, 1993
Manuscript Accepted: August 10, 1993
Published: March 1, 1994

Citation
Wei-Ping Huang, "Coupled-mode theory for optical waveguides: an overview," J. Opt. Soc. Am. A 11, 963-983 (1994)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-11-3-963

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited