OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 11, Iss. 5 — May. 1, 1994
  • pp: 1580–1588

Multiresolution deconvolution

Jean-Luc Starck and Albert Bijaoui  »View Author Affiliations

JOSA A, Vol. 11, Issue 5, pp. 1580-1588 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show how a deconvolution can be performed from the significant structures of an image in the wavelet space. These significant structures are computed from the wavelet coefficients of the data. The wavelet-transform algorithm that is used is a new one based on the fast Fourier transform. This approach is first studied for interferometric images, simulations are done, and then the method is generalized to any kind of data.

© 1994 Optical Society of America

Original Manuscript: June 18, 1993
Revised Manuscript: November 2, 1993
Manuscript Accepted: November 8, 1993
Published: May 1, 1994

Jean-Luc Starck and Albert Bijaoui, "Multiresolution deconvolution," J. Opt. Soc. Am. A 11, 1580-1588 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. C. Andrews, B. R. Hunt, “Preliminary concepts in image restoration,” in Digital Image Restoration, A. V. Oppenheim, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1977), pp. 113–116.
  2. A. Lannes, S. Roques, “Resolution and robustness in image processing: a new regularization principle,” J. Opt. Soc. Am. A 4, 189–199 (1987). [CrossRef]
  3. A. N. Tikhonov, V. Y. Arsenin, Solution of Ill-Posed Problems (Winston, Washington, D.C., 1977).
  4. H. C. Andrews, B. R. Hunt, “Linear algebraic restoration,” in Digital Image Restoration, A. V. Oppenheim, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1977), pp. 147–186.
  5. B. R. Frieden, “Image enhancement and restoration,” Vol. 6 of Springer Topics in Applied Physics (Springer-Verlag, Berlin, 1975), pp. 177–249.
  6. J. Cohen, “Tests of the photometric accuracy of image restoration using the maximum entropy algorithm,” Astrophys. J. 101, 734–737 (1991).
  7. T. J. Cornwell, “Deconvolution for real and synthetic apertures,” in Astronomical Data Analysis Software and System I, D. M. Worral, C. Biemesderfer, J. Barnes, eds. (Astronomical Society of the Pacific, San Francisco, Calif., 1992), pp. 163–169.
  8. C. H. Chui, Wavelet Analysis and Its Application (Academic, San Diego, Calif., 1992).
  9. I. Daubechies, “Orthogonal bases of compactly supported wavelets,” Comm. Pure Appl. Math. 41, 909–996 (1988). [CrossRef]
  10. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992). [CrossRef]
  11. Y. Meyer, “Orthonormal wavelets,” in Wavelets, J. M. Combes, A. Grossmann, Ph. Tchanitchian, eds. (Springer-Verlag, Berlin, 1989), pp. 21–37. [CrossRef]
  12. G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, L. Raphael, M. B. Ruskai, Wavelets and Their Applications (Jones and Bartlett, Cambridge, Mass., 1992).
  13. S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989). [CrossRef]
  14. M. J. T. Smith, T. P. Barnwell, “Exact reconstruction technique for tree structured subband coders,” IEEE Trans. Acoust. Speech Signal Process. 34, 434–441 (1988). [CrossRef]
  15. A. Cohen, I. Daubechies, J. C. Feauveau, “Biorthogonal bases of compactly supported wavelets,” Comm. Pure Appl. Math. 45, 485–560 (1992). [CrossRef]
  16. J. C. Feauveau, “Analyse multirésolution par ondelettes non orthogonales et bancs de filtres numériques,” Ph.D. dissertation (Université Paris-Sud, Orsay, France, 1990).
  17. A. Labeyrie, “Stellar interferometry methods,” Ann. Rev. Astron. Astrophys. 16, 77–102 (1978). [CrossRef]
  18. J. M. Beckers, “Interferometric imaging with the very large telescope,” J. Opt. 22, 73–83 (1991). [CrossRef]
  19. R. Narayan, R. Nityanananda, “Maximum entropy image restoration in astronomy,” Ann. Rev. Astron. Astrophys. 24, 127–170 (1986). [CrossRef]
  20. J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. 15, 417–426 (1974).
  21. B. P. Wakker, U. J. Schwarz, “The multi-resolution clean and its application to the short-spacing problem in interferometry,” Astron. Astrophys. 200, 312–322 (1988).
  22. J.-L. Starck, A. Bijaoui, “Wavelets and multiresolution clean,” in High Resolution Imaging by Interferometry II, J. R. Beckers, F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1992), pp. 853–861.
  23. J.-L. Starck, A. Bijaoui, “Deconvolution from the pyramidal structure,” in Wavelet Analysis and Applications, Y. Meyer, S. Rogues, eds. (Edition Frontière, Gyf-sur-Yvette, France, 1992), pp. 447–450.
  24. L. B. Lucy, “An iteration technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974). [CrossRef]
  25. P. H. Van Cittert, Z. Physik 69, 298 (1931). [CrossRef]
  26. J.-L. Starck, A. Bijaoui, B. Lopez, “Reconstruction of images of two evolved stars from speckle interferometry observations by the wavelet transform,” in Symposium on Very High Angular Resolution Imaging, J. Davis, R. D. E. Key, eds. (Reidel, Dordrecht, The Netherlands, to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited