OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 11, Iss. 5 — May. 1, 1994
  • pp: 1644–1652

Optical vortices in Gaussian random wave fields: statistical probability densities

Isaac Freund  »View Author Affiliations


JOSA A, Vol. 11, Issue 5, pp. 1644-1652 (1994)
http://dx.doi.org/10.1364/JOSAA.11.001644


View Full Text Article

Enhanced HTML    Acrobat PDF (1202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simple, closed-form analytical expressions are given for the statistical probability densities of the six parameters that define an optical vortex (phase singularity) in a Gaussian random wave field. Good agreement is found between calculation and a computer simulation that generates these vortices.

© 1994 Optical Society of America

History
Original Manuscript: August 19, 1993
Revised Manuscript: October 18, 1993
Manuscript Accepted: November 22, 1993
Published: May 1, 1994

Citation
Isaac Freund, "Optical vortices in Gaussian random wave fields: statistical probability densities," J. Opt. Soc. Am. A 11, 1644-1652 (1994)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-11-5-1644


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye, M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974).
  2. M. V. Berry, “Disruption of wavefronts: statistics of dislocations in incoherent Gaussian random waves,” J. Phys. A 11, 27–37 (1978).
  3. F. J. Wright, “Wavefront dislocations and their analysis using catastrophe theory,” in Structural Stability in Physics, W. Guttinger, H. Eikemeier, eds. (Springer-Verlag, Berlin, 1979), pp. 141–156.
  4. M. Berry, “Singularities in waves and rays,” in Physics of Defects, R. Balian, M. Kleman, J.-P. Poirier, eds. (North-Holland, Amsterdam, 1981), pp. 453–543.
  5. J. F. Nye, “The motion and structure of dislocations in wave-fronts,” Proc. R. Soc. London Ser. A 378, 219–239 (1981).
  6. F. J. Wright, J. F. Nye, “Dislocations in diffraction patterns: continuous waves and pulses,” Phil. Trans. R. Soc. London Ser. A 305, 339–382 (1982).
  7. Polarization singularities have been discussed by J. F. Nye, “Dislocations and disclinations in transverse electromagnetic waves,” in Physics of Defects, R. Balian, M. Kleman, J.-P. Poirier, eds. (North-Holland, Amsterdam, 1981), pp. 545–549;“Polarization effects in the diffraction of electromagnetic waves: the role of disclinations,” Proc. R. Soc. London Ser. A 387, 105–132 (1983);“Lines of circular polarization in electromagnetic fields,” Proc. R. Soc. London Ser. A 389, 279–290 (1983);J. F. Nye, J. V. Hajnal, “The wave structure of monochromatic electromagnetic radiation,” Proc. R. Soc. London Ser. A 409, 21–36 (1987);J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves. I. Theory,” Proc. R. Soc. London Ser. A 414, 433–446 (1987);“Singularities in the transverse fields of electromagnetic waves. II. Observations on the electric field,” Proc. R. Soc. London Ser. A 414, 447–468 (1987).
  8. P. Coullet, L. Gil, J. Lega, “Defect-mediated turbulence,” Phys. Rev. Lett. 62, 1619–1622 (1987).
  9. P. Coullet, L. Gil, F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989).
  10. G. Goren, I. Procaccia, S. Rasenat, V. Steinberg, “Interactions and dynamics of topological defects: theory and experiments near the onset of weak turbulence,” Phys. Rev. Lett. 63, 1237–1240 (1989).
  11. F. T. Arecchi, G. Giacomelli, P. L. Ramazza, S. Residori, “Experimental evidence of chaotic itinerancy and spatiotemporal chaos in optics,” Phys. Rev. Lett. 65, 2531–2534 (1990).
  12. L. Gil, J. Lega, J. L. Meunier, “Statistical properties of defect-mediated turbulence,” Phys. Rev. A 41, 1138–1141 (1990).
  13. M. Brambilla, F. Battipede, L. A. Lugiato, V. Penna, F. Prati, C. Tamm, C. O. Weiss, “Transverse laser patterns. I. Phase singularity crystals,” Phys. Rev. A 43, 5090–5113 (1991);“Transverse laser patterns. II. Variational principle for pattern selection, spatial multistability, and laser hydrodynamics,” Phys. Rev. A 43, 5114–5120 (1991).
  14. F. T. Arecchi, G. Giacomelli, P. L. Ramazza, S. Residori, “Vortices and defect statistics in two-dimensional optical chaos,” Phys. Rev. Lett. 67, 3749–3752 (1991).
  15. P. L. Ramazza, S. Residori, G. Giacomelli, F. T. Arecchi, “Statistics of topological defects in linear and nonlinear optics,” Europhys. Lett. 19, 475–480 (1992).
  16. G. Indebetouw, S. R. Liu, “Defect-mediated spatial complexity and chaos in a phase-conjugate resonator,” Opt. Commun. 91, 321–330 (1992).
  17. G. S. McDonald, K. S. Syed, W. J. Firth, “Optical vortices in beam propagation through a self-focussing medium,” Opt. Commun. 94, 469–476 (1992).
  18. G. A. Swartzlander, C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
  19. R. Neubecker, M. Kreuzer, T. Tschudi, “Phase defects in a nonlinear Fabry–Perot resonator,” Opt. Commun. 96, 117–122 (1993).
  20. L. Gil, “Vector order parameter for an unpolarized laser and its vectorial topological defects,” Phys. Rev. Lett. 70, 162–165 (1993).
  21. J. M. Kosterlitz, D. J. Thouless, “Two-dimensional physics,” in Progress in Low Temperature Physics, D. F. Brewer, ed. (North-Holland, Amsterdam, 1978), Vol. VII B, pp. 371–433.
  22. N. D. Mermin, “The topological theory of defects in ordered media,” Rev. Mod. Phys. 51, 591–648 (1979).
  23. N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. Pilipetskii, V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).
  24. N. B. Baranova, A. V. Mamaev, N. Pilipetsky, V. V. Shkunov, B. Ya. Zel’dovich, “Wave-front dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. 73, 525–528 (1983).
  25. I. Freund, N. Shvartsman, V. Freilikher, “Optical dislocation networks in highly random media,” Opt. Commun. 101, 247–264 (1993).
  26. Since we assume a linearly polarized wave, formally, a longitudinal component is required in order for ∇ · Ψ= 0 also to be satisfied (see Ref. 7, first entry). As a practical matter this longitudinal component is unmeasurable, and normally it may be neglected. Taking u=x̂, for our case the full formal solution of Maxwell’s equations is ψ(x,y,z)=[x̂F(x,y)−ẑ(i/k)∂F(x,y)/∂x]exp(−ikz), where x̂(ẑ) is a unit vector oriented along the x axis (z axis).
  27. E. Ochoa, J. W. Goodman, “Statistical properties of ray directions in a monochromatic speckle pattern,” J. Opt. Soc. Am. 73, 943–949 (1983).
  28. Handbook of Mathematical Functions, Natl. Bur. Stand. Appl. Math. Ser. No. 55, M. Abramowitz, I. Stegun, eds. (U.S. Government Printing Office, Washington, D.C., 1964), Chap. 9.
  29. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited