OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 11, Iss. 6 — Jun. 1, 1994
  • pp: 1768–1779

Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope

L. Novotny, D. W. Pohl, and P. Regli  »View Author Affiliations


JOSA A, Vol. 11, Issue 6, pp. 1768-1779 (1994)
http://dx.doi.org/10.1364/JOSAA.11.001768


View Full Text Article

Enhanced HTML    Acrobat PDF (1950 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of light through nanometer-sized structures is studied computationally by use of multiple-multipole method. A two-dimensional scanning near-field optical microscope structure is chosen as an example. The relevant near and far fields as well as some imaging properties are determined for the two principal polarizations. Strikingly different results are obtained for the two principal polarizations: for s polarization, strong field confinement in the gap region, high sensitivity of the radiation pattern to the presence of an object, and high contrast; for p polarization, higher signal level with low contrast. At small gap widths a substantial amount of radiation is coupled into the substrate at angles larger than the critical angle. Line scan simulations for λ = 488 nm indicate a resolution of approximately two times the optical slit width. Resolution and contrast can be optimized by the appropriate choice of detector orientation and angle of acceptance. Coherent superposition of the radiation emitted into different directions permits further improvements.

© 1994 Optical Society of America

History
Original Manuscript: October 13, 1993
Revised Manuscript: December 22, 1993
Manuscript Accepted: January 7, 1994
Published: June 1, 1994

Citation
L. Novotny, D. W. Pohl, and P. Regli, "Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope," J. Opt. Soc. Am. A 11, 1768-1779 (1994)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-11-6-1768

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited