OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 11, Iss. 7 — Jul. 1, 1994
  • pp: 1940–1948

Correspondence-based and energy-based detection of second-order motion in human vision

Andrew T. Smith  »View Author Affiliations


JOSA A, Vol. 11, Issue 7, pp. 1940-1948 (1994)
http://dx.doi.org/10.1364/JOSAA.11.001940


View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Motion in the retinal image may occur either in the form of spatiotemporal variations in luminance (first-order motion) or as spatiotemporal variations in characteristics derived from luminance, such as contrast (second-order motion). Second-order motion patterns were employed in an attempt to establish the principles used for the detection of image motion in the human visual system. In principle, one can detect motion at a high level of visual analysis by identifying features of the image and tracking their positions (correspondence-based detection) or at a low level by analysis of spatiotemporal luminance variations without reference to features (intensity-based detection). Prevailing models favor the latter approach, which has been adapted to account for the visibility of second-order motion by postulation of a stage of rectification that precedes motion energy detection [ J. Opt. Soc. Am. A 5, 1986 ( 1988)]. In two experiments it is shown that second-order motion is indeed detected normally by use of the strategy of transformation plus energy detection but that detection can also be achieved by use of the feature-correspondence strategy when the intensity strategy fails. In the first experiment, a stimulus is employed in which opposite directions of motion perception are predicted by the two strategies. It is shown that normally the direction associated with motion energy in the rectified image is seen but that the direction associated with feature motion is seen when the energy system is disabled by the use of an interstimulus interval. In the second experiment, masking of features is shown to have little effect on motion detection under normal conditions but a marked effect when an interstimulus interval is employed, suggesting that features are used in the latter case but not in the former.

© 1994 Optical Society of America

History
Original Manuscript: October 25, 1993
Revised Manuscript: February 2, 1994
Manuscript Accepted: February 14, 1994
Published: July 1, 1994

Citation
Andrew T. Smith, "Correspondence-based and energy-based detection of second-order motion in human vision," J. Opt. Soc. Am. A 11, 1940-1948 (1994)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-11-7-1940

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited