OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 11, Iss. 7 — Jul. 1, 1994
  • pp: 2137–2144

Eigenvector approach to the evaluation of the Jones N matrices of nonabsorbing crystalline media

C. Graham and R. E. Raab  »View Author Affiliations


JOSA A, Vol. 11, Issue 7, pp. 2137-2144 (1994)
http://dx.doi.org/10.1364/JOSAA.11.002137


View Full Text Article

Enhanced HTML    Acrobat PDF (845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An eigenvector equation within the electric octopole–magnetic quadrupole approximation is derived, from which it is possible in principle to establish the eigenvectors and the refractive indices of polarized light forms sustained by an anisotropic crystal for any chosen direction of phase propagation. It is shown that, for propagation along the crystal axes when the rays do not separate, a decomposition technique based on eigenvectors and the Jones resolution of a medium into independent differential plates substantially simplifies solution of the general problem. Precise expressions are obtained for the Jones parameters n, (nynx), (n−45n45), and (nRnL) in terms of multipole-property tensors of the crystal. The effects of crystal symmetry on these expressions are summarized.

© 1994 Optical Society of America

History
Original Manuscript: July 9, 1993
Manuscript Accepted: February 4, 1994
Published: July 1, 1994

Citation
C. Graham and R. E. Raab, "Eigenvector approach to the evaluation of the Jones N matrices of nonabsorbing crystalline media," J. Opt. Soc. Am. A 11, 2137-2144 (1994)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-11-7-2137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am. 38, 671–685 (1948). [CrossRef]
  2. R. C. Jones, “New calculus for the treatment of optical systems. VIII. Electromagnetic theory,” J. Opt. Soc. Am. 46, 126–131 (1956). [CrossRef]
  3. E. B. Graham, R. E. Raab, “Light propagation in cubic and other anisotropic crystals,” Proc. R. Soc. London Ser. A 430, 593–614 (1990). [CrossRef]
  4. A. D. Buckingham, M. B. Dunn, “Optical activity of oriented molecules,” J. Chem. Soc. A1988–1991 (1976).
  5. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge U. Press, Cambridge, 1982).
  6. H. A. Lorentz, “Double refraction by regular crystals,” Proc. K. Ned. Acad. Wet. 24, 333 (1922);also in H. A. Lorentz, Collected Papers, P. Zeeman, A. D. Fokker, eds. (Nijhoff, The Hague, 1936), Vol. 3, pp. 315–320. [CrossRef]
  7. J. Pastrnak, K. Vedam, “Optical anisotropy of silicon single crystals,” Phys. Rev. B 3, 2567–2571 (1971). [CrossRef]
  8. R. E. Raab, “Magnetic multipole moments,” Molec. Phys. 29, 1323–1331 (1975). [CrossRef]
  9. V. Devarajan, A. M. Glazer, “Theory and computation of optical rotatory power in inorganic crystals,” Acta Crystallogr. A 42, 560–569 (1986). [CrossRef]
  10. R. R. Birss, Symmetry and Magnetism, 2nd ed. (North-Holland, Amsterdam, 1966).
  11. R. R. Birss, “Macroscopic symmetry in space–time,” Rep. Prog. Phys.26, 307–360 (1963). [CrossRef]
  12. A. D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” in Intermolecular Forces, J. O. Hirschfelder, ed., Adv. Chem. Phys.12, 107–142 (1967).
  13. I. M. B. de Figueiredo, R. E. Raab, “A molecular theory of new differential light-scattering effects in a fluid,” Proc. R. Soc. London Ser. A 375, 425–441 (1981). [CrossRef]
  14. E. B. Graham, J. Pierrus, R. E. Raab, “Multipole moments and Maxwell’s equations,” J. Phys. B 25, 4673–4684 (1992). [CrossRef]
  15. L. Rosenfeld, Theory of Electrons (North-Holland, Amsterdam, 1951), Chap. 2.
  16. W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962).
  17. E. U. Condon, F. Seitz, “Lorentz double refraction in the regular system,” J. Opt. Soc. Am. 22, 393–401 (1932). [CrossRef]
  18. E. B. Graham, R. E. Raab, “On the Jones birefringence,” Proc. R. Soc. London A 390, 73–90 (1983). [CrossRef]
  19. H. J. Ross, B. S. Sherborne, G. E. Stedman, “Selection rules for optical activity and linear birefringences bilinear in electric and magnetic fields,” J. Phys. B 22, 459–473 (1989). [CrossRef]
  20. H. Nakano, H. Kimura, “Quantum statistical-mechanical theory of optical activity,” J. Phys. Soc. Jpn. 27, 519–535 (1969). [CrossRef]
  21. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 398.
  22. E. U. Condon, “Theories of optical rotatory power,” Rev. Mod. Phys. 9, 432–457 (1937). [CrossRef]
  23. P. H. Boulanger, M. Hayes, “Electromagnetic plane waves in anisotropic media: an approach using bivectors,” Phil. Trans. R. Soc. London A 330, 335–393 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited