## Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams

JOSA A, Vol. 11, Issue 9, pp. 2516-2525 (1994)

http://dx.doi.org/10.1364/JOSAA.11.002516

Enhanced HTML Acrobat PDF (980 KB)

### Abstract

Generalized Lorenz–Mie theory describes electromagnetic scattering of an arbitrary light beam by a spherical particle. The localized approximation is an analytical function that accurately models the beam-shape coefficients that give the decomposition of a focused Gaussian beam into partial waves. A mathematical justification and physical interpretation of the localized approximation is presented for a focused off-axis Gaussian beam that propagates parallel to but not along the *z* axis.

© 1994 Optical Society of America

**History**

Original Manuscript: October 1, 1993

Revised Manuscript: February 14, 1994

Manuscript Accepted: March 14, 1994

Published: September 1, 1994

**Citation**

Gérard Gouesbet and James A. Lock, "Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams," J. Opt. Soc. Am. A **11**, 2516-2525 (1994)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-11-9-2516

Sort: Year | Journal | Reset

### References

- T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12, 392–394 (1987). [CrossRef] [PubMed]
- J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988). [CrossRef] [PubMed]
- J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989). [CrossRef]
- E. E. M. Khaled, S. C. Hill, P. W. Barber, D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992). [CrossRef] [PubMed]
- H. C. van de Hulst, R. T. Wang, “Glare points,” Appl. Opt. 30, 4755–4763 (1991). See especially the section on reciprocity and an incident narrow beam on p. 4762. [CrossRef] [PubMed]
- J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993). [CrossRef]
- G. Gouesbet, G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,”J. Opt. (Paris) 13, 97–103 (1982). [CrossRef]
- G. Gouesbet, G. Gréhan, B. Maheu, “Scattering of a Gaussian beam by a Mie scatter center using a Bromwich formalism,”J. Opt. (Paris) 16, 83–93 (1985). [CrossRef]
- G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
- B. Maheu, G. Gouesbet, G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for an arbitrary location of the scatterer in an arbitrary incident profile,”J. Opt. (Paris) 19, 59–67 (1988). [CrossRef]
- J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
- G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef] [PubMed]
- B. Maheu, G. Gréhan, G. Gouesbet, “Generalized Lorenz–Mie theory: first exact values and comparisons with the localized approximation,” Appl. Opt. 26, 23–25 (1987). [CrossRef] [PubMed]
- G. Gouesbet, G. Gréhan, B. Maheu, “Computations of the gncoefficients in the generalized Lorenz–Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988). [CrossRef] [PubMed]
- G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnmin the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
- B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989). [CrossRef]
- J. A. Lock, G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
- L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
- J. R. Reitz, F. J. Milford, R. W. Christy, Foundations of Electromagnetic Theory, 3rd ed. (Addison-Wesley, Reading, Mass., 1979), Sec. 17.5.
- G. Gouesbet, B. Maheu, G. Gréhan, “The order of approximation in a theory of the scattering of a Gaussian beam by a Mie scatter center,”J. Opt. (Paris) 16, 239–247 (1985). [CrossRef]
- J. P. Barton, D. R. Alexander, “Fifth order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
- G. P. Können, J. H. de Boer, “Polarized rainbow,” Appl. Opt. 18, 1961–1965 (1979). [CrossRef] [PubMed]
- E. A. Hovenac, J. A. Lock, “Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series,” J. Opt. Soc. Am. A 9, 781–795 (1992). [CrossRef]
- J. A. Lock, “Improved Gaussian beam scattering algorithm,” submitted to Appl. Opt.
- F. Corbin, G. Gréhan, G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991). [CrossRef]
- E. A. Hovenac, J. A. Lock, “Calibration of the forward scattering spectrometer probe: modeling scattering from a multimode laser beam,”J. Atmos. Oceanic Technol. 10, 518–525 (1993). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.