## Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models

JOSA A, Vol. 12, Issue 1, pp. 162-176 (1995)

http://dx.doi.org/10.1364/JOSAA.12.000162

Enhanced HTML Acrobat PDF (630 KB)

### Abstract

We have developed a finite-difference time domain (FDTD) method and a novel geometric ray-tracing model for the calculation of light scattering by hexagonal ice crystals. In the FDTD method we use a staggered Cartesian grid with the implementation of an efficient absorbing boundary condition for the truncation of the computation domain. We introduce the Maxwell–Garnett rule to compute the mean values of the dielectric constant at grid points to reduce the inaccuracy produced by the staircasing approximation. The phase matrix elements and the scattering efficiencies for the scattering of visible light by two-dimensional long circular ice cylinders match closely those computed from the exact solution for size parameters as large as 60, with maximum differences less than 5%. In the new ray-tracing model we invoke the principle of geometric optics to evaluate the reflection and the refraction of localized waves, from which the electric and magnetic fields at the particle surface (near field) can be computed. Based on the equivalence theorem, the near field can subsequently be transformed to the far field, in which the phase interferences are fully accounted for. The phase functions and the scattering efficiencies for hexagonal ice crystals computed from the new geometric ray-tracing method compare reasonably well with the FDTD results for size parameters larger than approximately 20. When absorption is involved in geometric ray tracing, the adjusted real and imaginary refractive indices and Fresnel formulas are derived for practical applications based on the fundamental wave theory.

© 1995 Optical Society of America

**History**

Original Manuscript: June 7, 1994

Revised Manuscript: August 22, 1994

Manuscript Accepted: August 23, 1994

Published: January 1, 1995

**Citation**

Ping Yang and K. N. Liou, "Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models," J. Opt. Soc. Am. A **12**, 162-176 (1995)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-12-1-162

Sort: Year | Journal | Reset

### References

- A. J. Heymsfield, R. G. Knollenberg, “Properties of cirrus generating cells,”J. Atmos. Sci. 29, 1358–1366 (1972). [CrossRef]
- K. N. Liou, “Influence of cirrus clouds on weather and climate process: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
- K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994). [CrossRef]
- G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,”J. Atmos. Sci. 47, 1742–1753 (1990). [CrossRef]
- H. Jacobowitz, “A method for computing transfer of solar radiation through clouds of hexagonal ice crystals,”J. Quant. Spectrosc. Radiat. Transfer 11, 691–695 (1971). [CrossRef]
- P. Wendling, R. Wendling, H. K. Weickmann, “Scattering of solar radiation by hexagonal ice crystals,” Appl. Opt. 18, 2663–2671 (1979). [CrossRef] [PubMed]
- R. F. Coleman, K. N. Liou, “Light scattering by hexagonal ice crystals,”J. Atmos. Sci. 38, 1260–1271 (1981). [CrossRef]
- Q. Cai, K. N. Liou, “Polarized light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982). [CrossRef] [PubMed]
- Y. Takano, K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed for ray optics,” Appl. Opt. 24, 3254–3263 (1985). [CrossRef] [PubMed]
- Y. Takano, K. N. Liou, “Solar radiation transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,”J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
- E. Tränkle, R. G. Greenler, “Multiple-scattering effects in halo phenomena,” J. Opt. Soc. Am. A 4, 591–599 (1987). [CrossRef]
- K. Muinonen, “Scattering of light by crystals: a modified Kirchhoff approximation,” Appl. Opt. 28, 3044–3050 (1989). [CrossRef] [PubMed]
- Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals,”J. Atmos. Sci. (to be published).
- A. Macke, “Scattering of light by irregular ice crystals in the three-dimensional inhomogeneous cirrus clouds,” presented at the Eighth Conference on Atmospheric Radiation, Nashville, Tenn., January 1994.
- Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiation properties,”J. Atmos. Sci. 49, 1487–1493 (1992). [CrossRef]
- E. M. Purcell, C. P. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 196, 705–714 (1973). [CrossRef]
- B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
- P. Barber, C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864–2872 (1975). [CrossRef] [PubMed]
- G. H. Goedecke, S. G. O’Brien, “Scattering by irregular inhomogeneous particles via the digitized Green’s function algorithm,” Appl. Opt. 27, 2431–2438 (1981). [CrossRef]
- H. Y. Chen, M. F. Iskander, “Light scattering and absorption by fractal agglomerate and coagulations of smoke aerosols,” J. Mod. Opt. 37, 171–181 (1990). [CrossRef]
- S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,”IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
- A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975). [CrossRef]
- K. Umashankar, A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,”IEEE Trans. Electromagn. Compat. EMC-24, 397–405 (1982). [CrossRef]
- C. L. Britt, “Solution of electromagnetic scattering problems using time domain techniques,”IEEE Trans. Antennas Propag. 37, 1181–1191 (1989). [CrossRef]
- A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,”IEEE Trans. Electromagn. Compat. EMC-22, 191–202 (1980). [CrossRef]
- M. Furse, S. P. Mathur, O. P. Gandhi, “Improvements on the finite-difference time-domain method for calculating the radar cross section of a perfectly conducting target,” IEEE Trans. Microwave Theory Tech. 38, 919–927 (1990). [CrossRef]
- R. Holland, V. R. Cable, L. C. Wilson, “Finite-volume time-domain (FVTD) techniques for EM scattering,”IEEE Trans. Electromagn. Compat. 33, 281–293 (1991). [CrossRef]
- Z. Liao, H. L. Wong, B. Yang, Y. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sin. 27, 1063–1076 (1984).
- B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651 (1977). [CrossRef]
- G. Mur, “Absorbing boundary condition for the finite-difference approximation of the time-domain electromagnetic-field equations,”IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1982). [CrossRef]
- J. G. Blaschak, G. A. Kriegsmann, “A comparative study of absorbing boundary conditions,”J. Comput. Phys. 77, 109–139 (1988). [CrossRef]
- T. G. Moore, J. G. Blaschak, A. Taflove, G. A. Kriegsmann, “Theory and application of radiation boundary operators,”IEEE Trans. Antennas Propag. 36, 1797–1812 (1988). [CrossRef]
- M. Fusco, “FDTD algorithm in curvilinear coordinates,”IEEE Trans. Antennas Propag. 38, 76–89 (1990). [CrossRef]
- T. G. Jurgens, A. Taflove, K. Umashankar, T. G. Moore, “Finite-difference time-domain modeling of curved surfaces,”IEEE Trans. Antennas Propag. 40, 357–366 (1992). [CrossRef]
- K. S. Yee, J. S. Chen, A. H. Chang, “Conformal finite difference time domain (FDTD) with overlapping grids,”IEEE Trans. Antennas Propag. 40, 1068–1075 (1992). [CrossRef]
- M. A. Fusco, M. V. Smith, L. W. Gordon, “A three-dimensional FDTD algorithm in curvilinear coordinates,”IEEE Trans. Antennas Propag. 39, 1463–1471 (1991). [CrossRef]
- J. F. Lee, “Obliquely Cartesian finite difference time domain algorithm,” Proc. Inst. Electr. Eng. Part H, 140, 23–27 (1993).
- S. Omick, S. P. Castillo, “A new finite-difference time-domain algorithm for the accurate modeling of wide-band electromagnetic phenomena,”IEEE Trans. Electromagn. Compat. 35, 315–222 (1993). [CrossRef]
- H. Vinh, H. Duger, C. P. Van Dam, “Finite-difference methods for computational electromagnetics (CEM),” in IEEE AP-S International Symposium Digest, (Institute of Electrical and Electronics Engineers, New York, 1992) Vol. 3, pp. 1682–1683.
- D. Steich, R. Luebbers, K. Kunz, “Absorbing boundary condition convergence comparisons,” in IEEE AP-S International Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1993), Vol. 1, pp. 6–9.
- K. K. Mei, J. Fang, “Superabsorption—a method to improve absorbing boundary conditions,”IEEE Trans. Antennas Propag. 40, 1001–1010 (1992). [CrossRef]
- R. H. T. Bates, “Analytic constraints on electromagnetic computations,” IEEE Trans. Microwave Theory Tech. MTT-23, 605–622 (1975). [CrossRef]
- C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chaps. 3 and 8.
- M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959), pp. 110–113, 377–399, 627–633, and 707–716.
- J. A. Stratton, L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939). [CrossRef]
- J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), pp. 299–304.
- E. A. Hovenac, J. A. Lock, “Assessing the contribution of surface waves and complex rays to far-field Mie scattering by use of the Debye series,” J. Opt. Soc. Am. A 9, 781–795 (1992). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.