OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 12, Iss. 12 — Dec. 1, 1995
  • pp: 2672–2678

Electromagnetic theory of Bragg–Fresnel linear zone plates

F. Montiel and M. Nevière  »View Author Affiliations


JOSA A, Vol. 12, Issue 12, pp. 2672-2678 (1995)
http://dx.doi.org/10.1364/JOSAA.12.002672


View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An electromagnetic analysis of diffraction by Fresnel linear zone plates ruled into a homogeneous or a stratified media is developed. It takes advantage of the new possibilities brought by the introduction of the R-matrix propagation algorithm into the theory of lamellar gratings, namely, the large increase of the stability domain of the numerical results. Thus a linear Fresnel zone plate can be delt with as a period of such a grating, and the diffracted field can be computed for both TE and TM polarizations. Numerical examples show the convergence of the method and study the focusing properties of positive and negative zone plates. The influence of different parameters such as incidence or number of lines is pointed out.

© 1995 Optical Society of America

History
Original Manuscript: December 20, 1994
Revised Manuscript: May 15, 1995
Manuscript Accepted: June 15, 1995
Published: December 1, 1995

Citation
F. Montiel and M. Nevière, "Electromagnetic theory of Bragg–Fresnel linear zone plates," J. Opt. Soc. Am. A 12, 2672-2678 (1995)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-12-12-2672


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Aristov, A. I. Erko, V. V. Martinov, “Principles of Bragg–Fresnel multilayer optics,” Rev. Phys. Appl. 23, 1623–1630 (1988);S. Babin, A. Erko, “Fabrication of diffractive x-ray optical elements,” Nucl. Instrum. Methods Phys. Res. A 282, 529–535 (1989). [CrossRef]
  2. J. Maser, “Evaluation of the efficiency of zones plates with high aspect ratios by application of coupled wave theory,” in X-ray Microscopy III, A. G. Michette, G. R. Morrison, G. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 104–106. [CrossRef]
  3. A. Sammar, J.-M. André, “Diffraction of multilayer gratings and zone plates in the x-ray region using the Born approximation,” J. Opt. Soc. Am. A 10, 600–613 (1993). [CrossRef]
  4. A. Sammar, J.-M. André, “Dynamical theory of stratified Fresnel linear zone plates,” J. Opt. Soc. Am. A 10, 2324–2337 (1993);A. Mirone, M. Idir, P. Dhez, G. Soullie, A. Erko, “Dynamical theory for Bragg–Fresnel multilayer lenses for X-UV and X-ray range,” Opt. Commun. 111, 191–198 (1994). [CrossRef]
  5. R. Petit, Electromagnetic Theory of Gratings, (Springer-Verlag, Berlin, 1980). [CrossRef]
  6. J. T. Sheridan, C. J. R. Sheppard, “Coherent imaging of thick fine isolated structures,” J. Opt. Soc. Am. A 10, 614–632 (1993). [CrossRef]
  7. L. Li, “A multilayer modal method for diffraction gratings of arbitrary profile, depth, and conductivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
  8. F. Montiel, M. Nevière, “Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm,” J. Opt. Soc. Am. A 12, 3241–3250 (1994). [CrossRef]
  9. A. E. Sammar, “Etude théorique et expérimentale de systèmes optiques interférentiels dispersifs et focalisants pour la spectroscopie et l’imagerie x,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, May6, 1993).
  10. J. P. Hugonin, R. Petit, “A numerical study of the problem of diffraction at a non-periodic obstacle,” Opt. Commun. 20, 360–364 (1977);J. P. Hugonin, R. Petit, “Theoretical and numerical study of a locally deformed stratified medium,” J. Opt. Soc. Am. 71, 664–674 (1981). [CrossRef]
  11. M. Nevière, P. Vincent, R. Petit, “Sur la théorie du réseau conducteur et ses applications ὰ l’optique,” Nouv. Rev. Opt. 5, 65–77 (1974). [CrossRef]
  12. M. Nevière, J. Flamand, “Electromagnetic theory as it applies to x-ray and XUV gratings,” Nucl. Instrum. Methods 172, 273–279 (1980). [CrossRef]
  13. M. Nevière, J. Flamand, J. M. Lerner, “Optimization of gratings for soft x-ray monochromators,” Nucl. Instrum. Methods 195, 183–189 (1982). [CrossRef]
  14. P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980). [CrossRef]
  15. J. W. Goodman, Introduction ὰ l’Optique de Fourier et à l’Holographie (Masson, Paris, 1972), p. 31

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited