OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 12, Iss. 2 — Feb. 1, 1995
  • pp: 333–339

Optimal design for antireflective tapered two-dimensional subwavelength grating structures

Eric B. Grann, M. G. Moharam, and Drew A. Pommet  »View Author Affiliations


JOSA A, Vol. 12, Issue 2, pp. 333-339 (1995)
http://dx.doi.org/10.1364/JOSAA.12.000333


View Full Text Article

Enhanced HTML    Acrobat PDF (6282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Techniques for the design of continuously tapered two-dimensional (2D) subwavelength surface-relief grating structures for broadband antireflection surfaces are investigated. It has been determined that the Klopfenstein taper [ Proc. IRE 44, 31 ( 1956)] produces the optimum graded-index profile with the smallest depth for any specified minimum reflectance. A technique is developed to design the equivalent tapered subwavelength surface-relief grating structure by use of 2D effective-medium theory. An optimal Klopfenstein tapered 2D subwavelength grating is designed to reduce the Fresnel reflections by 20 dB over a broad band from an air–substrate (ns = 3.0) interface. The performance is verified by use of both a 2D effective-medium-theory simulation algorithm and rigorous coupled-wave analysis. These structures are also shown to achieve this low reflectance over a wide field of view (θFOV > 110°). The pyramidal spatial profile, which has generally been assumed to produce the optimal broadband antireflection grating structure, is shown to require a significantly larger depth to achieve the same performance as a Klopfenstein-designed tapered antireflection grating structure.

© 1995 Optical Society of America

History
Original Manuscript: May 31, 1994
Revised Manuscript: September 6, 1994
Manuscript Accepted: September 12, 1994
Published: February 1, 1995

Citation
Eric B. Grann, M. G. Moharam, and Drew A. Pommet, "Optimal design for antireflective tapered two-dimensional subwavelength grating structures," J. Opt. Soc. Am. A 12, 333-339 (1995)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-12-2-333

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited