OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 12, Iss. 4 — Apr. 1, 1995
  • pp: 743–751

Fractional Fourier optics

Haldun M. Ozaktas and David Mendlovic  »View Author Affiliations


JOSA A, Vol. 12, Issue 4, pp. 743-751 (1995)
http://dx.doi.org/10.1364/JOSAA.12.000743


View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There exists a fractional Fourier-transform relation between the amplitude distributions of light on two spherical surfaces of given radii and separation. The propagation of light can be viewed as a process of continual fractional Fourier transformation. As light propagates, its amplitude distribution evolves through fractional transforms of increasing order. This result allows us to pose the fractional Fourier transform as a tool for analyzing and describing optical systems composed of an arbitrary sequence of thin lenses and sections of free space and to arrive at a general class of fractional Fourier-transforming systems with variable input and output scale factors.

© 1995 Optical Society of America

History
Original Manuscript: May 20, 1994
Manuscript Accepted: August 22, 1994
Published: April 1, 1995

Citation
Haldun M. Ozaktas and David Mendlovic, "Fractional Fourier optics," J. Opt. Soc. Am. A 12, 743-751 (1995)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-12-4-743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Its Appl. 25, 241–265 (1980). [CrossRef]
  2. A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math. 39, 159–175 (1987). [CrossRef]
  3. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Fourier transforms of fractional order and their optical interpretation,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 127–130.
  4. H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993). [CrossRef]
  5. D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation. I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
  6. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their optical implementation. II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
  7. H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
  8. L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084 (1994). [CrossRef]
  9. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  10. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform,” Appl. Opt. 33, 6188–6193 (1994). [CrossRef] [PubMed]
  11. A. W. Lohmann, B. H. Soffer, “Relationship between two transforms: Radon–Wigner and fractional Fourier,” in Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 109.
  12. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Self Fourier functions and fractional Fourier transforms,” Opt. Commun. 105, 36–38 (1994). [CrossRef]
  13. R. G. Dorsch, A. W. Lohmann, Y. Bitran, D. Mendlovic, H. M. Ozaktas, “Chirp filtering in the fractional Fourier domain,” Appl. Opt. 11, 7599–7602 (1994). [CrossRef]
  14. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators,” Opt. Lett. 19, 1678–1680. [PubMed]
  15. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  16. A similar limiting process is discussed in P. J. Readon, R. A. Chipman, “Maximum power of refractive lenses: a fundamental limit,” Opt. Lett. 15, 1409–1411 (1990). [CrossRef]
  17. M. J. Bastiaans, “The Wigner distribution applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978). [CrossRef]
  18. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. A 69, 1710–1716 (1979). [CrossRef]
  19. M. J. Bastiaans, “The Wigner distribution function and Hamilton’s characteristics of a geometric-optical system,” Opt. Commun. 30, 321–326 (1979). [CrossRef]
  20. M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik 82, 173–181 (1989).
  21. M. J. Bastiaans, “Second-order moments of the Wigner distribution function in first-order optical systems,” Optik 88, 163–168 (1991).
  22. L. Onural, “Diffraction from a wavelet point of view,” Opt. Lett. 18, 846–848 (1993). [CrossRef] [PubMed]
  23. P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19, 1388–1390 (1994). [CrossRef] [PubMed]
  24. P. Pellat-Finet, G. Bonnet, “Fractional order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited