Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Remote object recognition by analysis of surface structure

Not Accessible

Your library or personal account may give you access

Abstract

We present a new algorithm for the discrimination of remote objects by their surface structure. Starting from a range-azimuth profile function, we formulate a range-azimuth matrix whose largest eigenvalues are used as discriminating features to separate object classes. A simpler, competing algorithm uses the number of sign changes in the range-azimuth profile function to discriminate among classes. Whereas both algorithms work well on noiseless data, an experiment involving real data shows that the eigenvalue method is far more robust with respect to noise than is the sign-change method. Two well-known methods based on surface structure, variance, and fractal dimension were also tested on real data. Neither method furnished the aspect invariance and the discriminability of the eigenvalue method.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiscale fractal theory and object characterization

T. Peli
J. Opt. Soc. Am. A 7(6) 1101-1112 (1990)

Bispectral analysis of the wavelength dependence of speckle: remote sensing of object shape

Lyle G. Shirley and Peter A. Lo
J. Opt. Soc. Am. A 11(3) 1025-1046 (1994)

Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings

Song Peng and G. Michael Morris
J. Opt. Soc. Am. A 12(5) 1087-1096 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.