OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 12, Iss. 7 — Jul. 1, 1995
  • pp: 1522–1533

Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems

Anthony A. Tovar and Lee W. Casperson  »View Author Affiliations


JOSA A, Vol. 12, Issue 7, pp. 1522-1533 (1995)
http://dx.doi.org/10.1364/JOSAA.12.001522


View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel 3 × 3 transfer-matrix method is developed to propagate off-axis Gaussian beams in astigmatic optical systems that may include tilted, displaced, or curved optical elements. Unlike in a previous generalized ray matrix formalism, optical elements that possess gain or loss such as Gaussian apertures, complex lenslike media, and amplifiers are included; and a new beam transformation is found. In addition, a novel exponential variable-reflectivity mirror, which displaces a Gaussian beam without changing its spot size, and a complex prismlike medium are introduced.

© 1995 Optical Society of America

History
Original Manuscript: October 4, 1994
Revised Manuscript: February 2, 1995
Manuscript Accepted: February 8, 1995
Published: July 1, 1995

Citation
Anthony A. Tovar and Lee W. Casperson, "Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems," J. Opt. Soc. Am. A 12, 1522-1533 (1995)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-12-7-1522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gerrard, J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, New York, 1975), pp. 24–26.
  2. A. Cayley, “A memoir on the theory of matrices,” Philos. Trans. R. Soc. London CXLVIII, 17–37 (1858); also published in The Collected Mathematical Papers of Arthur Cayley (Cambridge U. Press, Cambridge, 1889), Vol. 2, pp. 475–496.
  3. K. Halbach, “Matrix representation of Gaussian optics,” Am. J. Phys. 32, 90–108 (1964). [CrossRef]
  4. J. A. Arnaud, “Degenerate optical cavities. II. Effects of misalignments,” Appl. Opt. 8, 1909–1917 (1969). [CrossRef] [PubMed]
  5. A. Hardy, “Beam propagation through parabolic-index waveguides with distorted optical axis,” Appl. Phys. 18, 223–226 (1979). [CrossRef]
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 607–616.
  7. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  8. P. K. Tien, J. P. Gordon, J. R. Whinnery, “Focusing of a light beam of Gaussian field distribution in continuous and periodic lens-like media,” IEEE Proc. 53, 129–136 (1965). [CrossRef]
  9. L. W. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12, 2434–2441 (1973). [CrossRef] [PubMed]
  10. L. W. Casperson, “Mode stability of lasers and periodic optical systems,” IEEE J. Quantum Electron. QE-10, 629–634 (1974). [CrossRef]
  11. M. Nazarathy, A. Hardy, J. Shamir, “Generalized mode propagation in first-order optical systems with loss or gain,” J. Opt. Soc. Am. 72, 1409–1420 (1982). [CrossRef]
  12. A. A. Tovar, L. W. Casperson, “Off-axis complex-argument polynomial-Gaussian beams in optical systems,” J. Opt. Soc. Am. A 8, 60–68 (1991). [CrossRef]
  13. N. McCarthy, P. Lavigne, “Optical resonators with Gaussian reflectivity mirrors: misalignment sensitivity,” Appl. Opt. 22, 2704–2708 (1983). [CrossRef] [PubMed]
  14. N. McCarthy, M. Morin, “High-order transverse modes of misaligned laser resonators with Gaussian reflectivity mirrors,” Appl. Opt. 28, 2189–2191 (1989). [CrossRef] [PubMed]
  15. D. Marcuse, “The effect of the ∇n2term on the modes of an optical square-law medium,” IEEE J. Quantum Electron. QE-9, 958–960 (1973). [CrossRef]
  16. C. Yeh, L. W. Casperson, W. P. Brown, “Scalar-wave approach for single-mode inhomogeneous fiber problems,” Appl. Phys. Lett. 34, 460–462 (1979). [CrossRef]
  17. J. D. Love, C. D. Hussey, A. W. Snyder, R. A. Sammut, “Polarization corrections to mode propagation on weakly guiding fibers,” J. Opt. Soc. Am. 72, 1583–1591 (1982). [CrossRef]
  18. C. C. Su, “On the scalar approximation in fiber optics,” IEEE Trans. Microwave Theory Tech. 36, 1100–1103 (1988). [CrossRef]
  19. R. C. Jones, “A new calculus for the treatment of optical systems. V. A more general formulation and description of another calculus,” J. Opt. Soc. Am. 37, 107–110 (1947). [CrossRef]
  20. A. A. Tovar, L. W. Casperson, “Gaussian beam optical systems with high gain or high loss media,” IEEE Trans. Microwave Theory Tech. (to be published).
  21. W. R. Bennett, Appl. Opt. Suppl. 2, 3–33 (1965).
  22. B. N. Perry, P. Rabinowitz, M. Newstein, “Wave propagation in media with focused gain,” Phys. Rev. A 27, 1989–2002 (1983). [CrossRef]
  23. L. W. Casperson, “Beam modes in complex lenslike media and resonators,” J. Opt. Soc. Am. 66, 1373–1379 (1976). [CrossRef]
  24. L. W. Casperson, S. J. Sheldrake, “Beam deflection and isolation in laser amplifiers,” Opt. Commun. 12, 349–353 (1974). [CrossRef]
  25. L. W. Casperson, S. Lunnam, “Gaussian modes in high loss laser resonators,” Appl. Opt. 14, 1193–1199 (1975). [CrossRef] [PubMed]
  26. L. W. Casperson, “Beam propagation in tapered quadratic-index waveguides: analytical solutions,” J. Lightwave Technol. LT-3, 264–272 (1985). [CrossRef]
  27. A. A. Tovar, L. W. Casperson, “Beam propagation in parabolically tapered graded-index waveguides,” Appl. Opt. 33, 7733–7739 (1994). [CrossRef] [PubMed]
  28. L. W. Casperson, “Beam propagation in periodic quadratic-index waveguides,” Appl. Opt. 24, 4395–4403 (1985). [CrossRef] [PubMed]
  29. L. W. Casperson, J. L. Kirkwood, “Beam propagation in tapered quadratic-index waveguides: numerical solutions,” J. Lightwave Technol. LT-3, 256–263 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited