OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 12, Iss. 8 — Aug. 1, 1995
  • pp: 1647–1656

Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye

Austin Roorda, Melanie C. W. Campbell, and W. R. Bobier  »View Author Affiliations

JOSA A, Vol. 12, Issue 8, pp. 1647-1656 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye’s pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.

© 1995 Optical Society of America

Original Manuscript: March 30, 1994
Revised Manuscript: September 6, 1994
Manuscript Accepted: October 3, 1994
Published: August 1, 1995

Austin Roorda, W. R. Bobier, and Melanie C. W. Campbell, "Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye," J. Opt. Soc. Am. A 12, 1647-1656 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. R. Bobier, O. J. Braddick, “Eccentric photorefraction: optical analysis and empirical measures,” Am. J. Optom. Physiol. Opt. 62, 614–620 (1985). [CrossRef] [PubMed]
  2. H. C. Howland, “Optics of photoretinoscopy: results from ray tracing,” Am. J. Optom. Physiol. Opt. 62, 621–625 (1985). [CrossRef] [PubMed]
  3. F. Schaeffel, H. C. Howland, S. Weiss, E. Zrenner, “Measurement of the dynamics of accommodation by automated real time photorefraction,” Invest. Ophthalmol. Vis. Sci. 34, 1306 (1993).
  4. M. C. W. Campbell, W. R. Bobier, A. Roorda, “Effect of monochromatic aberrations on photorefraction,” J. Opt. Soc. Am. A 12, 1637–1646 (1995). [CrossRef]
  5. A. Roorda, W. R. Bobier, M. C. W. Campbell, “The effect of the eye’s chromatic aberration on eccentric photorefraction,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 146–149.
  6. W. Wesemann, A. M. Norcia, D. Allen, “Theory of eccentric photorefraction (photoretinoscopy): astigmatic eyes,” J. Opt. Soc. Am. A 8, 2038–2047 (1991). [CrossRef] [PubMed]
  7. I. J. Hodgkinson, K. M. Chong, A. C. B. Molteno, “Photorefraction of the living eye: a model for linear knife edge photoscreening,” Appl. Opt. 30, 2263–2269 (1991). [CrossRef] [PubMed]
  8. F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. D. Home, ed. (Oriel, London, 1969), pp. 375–385.
  9. W. R. Bobier, “Eccentric photorefraction: a method to measure accommodation of highly hypermetropic infants,” Clin. Vision Sci. 5, 45–66 (1990).
  10. N. Sayles, H. C. Howland, “Relation of the retinoscopic reflex to the monochromatic aberration of the eye,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 142 (1985).
  11. M. C. W. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587–1602 (1990). [CrossRef] [PubMed]
  12. W. N. Charman, “Optics of the human eye,” in Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Vol. 1, W. N. Charman, ed., pp. 1–14.
  13. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).
  14. W. R. Bobier, “Eccentric photorefraction,” Ph.D. dissertation (University of Cambridge, Cambridge, 1987).
  15. J.-M. Gorrand, A. Alfieri, J.-Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984). [CrossRef] [PubMed]
  16. G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986). [CrossRef] [PubMed]
  17. R. Röhler, F. Schmeilau, “Properties of isolated frog retinae in reflecting non-polarized and polarized light,” Vision Res. 16, 241–246 (1976). [CrossRef] [PubMed]
  18. P. Artal, “Incorporation of directional effects of the retina into computations of optical transfer function of human eyes,” J. Opt. Soc. Am. A 6, 1941–1944 (1989). [CrossRef] [PubMed]
  19. W. N. Charman, B. Saunders, “Theoretical and practical factors influencing the optical performance of contact lenses for the presbyope,” J. Brit. Cont. Lens Assoc. 13, 67–75 (1990). [CrossRef]
  20. M. C. W. Campbell, W. N. Charman, L. Voisin, C. Cui, “Psychophysical measurement of the optical quality of varifocal contact lenses,” in Ophthalmic and Visual Optics and Noninvasive Assessment of the Visual System, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 12–15.
  21. H. C. Howland, O. J. Braddick, J. Atkinson, B. Howland, “Optics of photorefraction: orthogonal and isotropic methods,” J. Opt. Soc. Am. 73, 1701–1708 (1983). [CrossRef] [PubMed]
  22. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989). [CrossRef] [PubMed]
  23. I. J. Hodgkinson, P. B. Greer, A. C. B. Molteno, “Point spread function for light scattered in the human ocular fundus,” J. Opt. Soc. Am. A 11, 479–486 (1994). [CrossRef]
  24. W. N. Charman, “Reflection of plane-polarized light by the retina,” Br. J. Physiol. Opt. 34, 34–49 (1980). [PubMed]
  25. K. Kaakinen, H. O. Kaseva, K. Eeva-Raija, “Mass screening of children for strabismus or ametropia with two flash photoskiascopy,” Acta Ophthalmol. 64, 105–110 (1986).
  26. K. Kaakinen, L. Ranta-Kemppainen, “Screening of infants for strabismus and refractive errors with two-flash photorefraction with and without cycloplegia,” Acta Ophthalmol. 64, 578–582 (1986).
  27. D. P. Crewther, P. M. Kiely, A. McCarthy, S. G. Crewther, “Evaluation of paraxial photorefraction in screening a population of monkeys for refractive errors,” Clin. Vision Sci. 3, 213–220 (1988).
  28. R. H. Duckman, B. Meyer, “The use of photoretinoscopy as a screening technique in the assessment of anisometropia and significant refractive error in infants/toddlers/children and special populations,” Am. J. Optom. Physiol. Opt. 64, 604–610 (1987). [CrossRef] [PubMed]
  29. C. Hsu-Winges, R. D. Hamer, A. M. Norcia, H. Wesemann, C. Chan, “Polaroid photorefractive screening of infants,” J. Pediatr. Ophthalmol. Strabismus 26, 254–260 (1989). [PubMed]
  30. R. A. Kennedy, S. B. Sheps, “A comparison of photo-screening techniques for amblyopic factors in children,” Can. J. Ophthalomol. 24, 259–264 (1989).
  31. A. C. B. Molteno, I. Hoare-Nairne, I. C. Parr, A. Simpson, I. J. Hodgkinson, N. E. O’Brien, S. D. Watts, “The Otago photoscreener, a method for the mass screening of infants to detect squint and refractive errors,” Trans. Ophthalmol. Soc. N. Z. 35, 43–49 (1983). [PubMed]
  32. J. Sjostrand, M. Abrahamsson, G. Fabain, O. Weinhall, “Photorefraction: a useful tool to detect refraction errors,” Acta Ophthalmol. Suppl. 157, 46–52 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited