OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 12, Iss. 9 — Sep. 1, 1995
  • pp: 1974–1983

Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings

Justin B. Judkins and Richard W. Ziolkowski  »View Author Affiliations


JOSA A, Vol. 12, Issue 9, pp. 1974-1983 (1995)
http://dx.doi.org/10.1364/JOSAA.12.001974


View Full Text Article

Enhanced HTML    Acrobat PDF (608 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simulation tool based on the finite-difference time-domain (FDTD) technique is developed to model the electromagnetic interaction of a focused optical Gaussian beam in two dimensions incident on a simple model of a corrugated dielectric surface plated with a thin film of realistic metal. The technique is a hybrid approach that combines an intensive numerical method near the surface of the grating, which takes into account the optical properties of metals, with a free-space transform to obtain the radiated fields. A description of this technique is presented along with numerical examples comparing gratings made with realistic and perfect conductors. In particular, a demonstration is given of an obliquely incident beam focused on a uniform grating and a normally incident beam focused on a nonuniform grating. The gratings in these two cases are coated with a negative-permittivity thin film, and the scattered radiation patterns for these structures are studied. Both TE and TM polarizations are investigated. Using this hybrid FDTD technique results in a complete and accurate simulation of the total electromagnetic field in the near field as well as in the far field of the grating. It is shown that there are significant differences in the performances of the realistic metal and the perfect metal gratings.

© 1995 Optical Society of America

History
Original Manuscript: September 26, 1994
Revised Manuscript: March 10, 1995
Manuscript Accepted: April 25, 1995
Published: September 1, 1995

Citation
Justin B. Judkins and Richard W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Am. A 12, 1974-1983 (1995)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-12-9-1974

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited