OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 13, Iss. 11 — Nov. 1, 1996
  • pp: 2219–2231

Rigorous electromagnetic analysis of diffractive cylindrical lenses

K. Hirayama, E. N. Glytsis, T. K. Gaylord, and D. W. Wilson  »View Author Affiliations


JOSA A, Vol. 13, Issue 11, pp. 2219-2231 (1996)
http://dx.doi.org/10.1364/JOSAA.13.002219


View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel two-region formulation of the rigorous electromagnetic boundary element method (BEM) is developed and applied to practical diffractive cylindrical lenses of continuous profile and with discrete levels (32, 8, and 2). The performance of these diffractive lenses is presented for incident waves of TE and TM polarization, for a range of beam profiles, and for normal and nonnormal incidence. An optimum width of the Gaussian beam is determined. The BEM is shown to be accurate and versatile, providing the numerical and graphical results that are needed for analysis and design of diffractive elements.

© 1996 Optical Society of America

History
Original Manuscript: February 7, 1996
Revised Manuscript: May 10, 1996
Manuscript Accepted: May 21, 1996
Published: November 1, 1996

Citation
K. Hirayama, D. W. Wilson, E. N. Glytsis, and T. K. Gaylord, "Rigorous electromagnetic analysis of diffractive cylindrical lenses," J. Opt. Soc. Am. A 13, 2219-2231 (1996)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-13-11-2219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Feature issue on “Diffractive optics applications,” Appl. Opt. 34, 2399–2559 (1995).
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).
  3. D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994). [CrossRef]
  4. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995). [CrossRef]
  5. B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994). [CrossRef]
  6. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector modelling diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39 (1995). [CrossRef]
  7. M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element–boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996). [CrossRef]
  8. M. S. Mirotznik, D. W. Prather, J. N. Mait, “Hybrid finite element–boundary element method for vector modeling diffractive optical elements,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 2–13 (1996). [CrossRef]
  9. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Design of subwavelength diffractive optical elements using a hybrid finite element–boundary element method,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 14–23 (1996). [CrossRef]
  10. E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993). [CrossRef]
  11. P. K. Banerjee, R. Butterfield, eds., Developments in Boundary Element Methods (Applied Science Publishers, London, 1979).
  12. E. Yamashita, ed., Analysis Methods for Electromagnetic Wave Problems (Artech House, Boston, 1990), pp. 33–77.
  13. P.-B. Zhou, Numerical Analysis of Electromagnetics Fields (Springer-Verlag, New York, 1993), pp. 287–323. [CrossRef]
  14. T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Com-mun. Jpn. Pt. 2 74, 11–20 (1991). [CrossRef]
  15. E. Noponen, J. Turunen, “Binary high-frequency-carrier diffractive optical elements: electromagnetic theory,” J. Opt. Soc. Am. A 11, 1097–1109 (1994). [CrossRef]
  16. M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK Scientific, Tokyo, 1992), pp. 43–47.
  17. P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992). [CrossRef]
  18. P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron beam lithography,” in Optoelectronic Interconnects and Packaging ’96, R. T. Chen, P. S. Guilfoyle, eds., Vol. CR62 of Critical Review Series (SPIE, Bellingham, Wash., 1996), pp. 415–430.
  19. D. W. Wilson, P. D. Maker, R. E. Muller, “Binary optic reflection grating for an imaging spectrometer,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 255–266 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited