OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 13, Iss. 12 — Dec. 1, 1996
  • pp: 2367–2374

Aperture configuration optimality criterion for phased arrays of optical telescopes

Laurent M. Mugnier, Gérard Rousset, and Frédéric Cassaing  »View Author Affiliations

JOSA A, Vol. 13, Issue 12, pp. 2367-2374 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address the optimization of the relative arrangement (aperture configuration) of a phased array of optical telescopes, coherently combined to form images of extended objects in a common focal plane. A novel optimality criterion, which is directly linked to the restoration error of the original object from the recorded image, is derived. This criterion is then refined into a second criterion to accommodate the possible knowledge of the noise spectrum. The optimal configuration is a function of the maximum spatial frequency of interest (or desired resolution) and takes into account the diameters of the elementary telescopes. Simulations illustrate the usefulness of this criterion for designing a synthetic-aperture optical instrument with three, four, and five telescopes.

© 1996 Optical Society of America

Original Manuscript: January 16, 1996
Revised Manuscript: July 10, 1996
Manuscript Accepted: May 14, 1996
Published: December 1, 1996

Laurent M. Mugnier, Gérard Rousset, and Frédéric Cassaing, "Aperture configuration optimality criterion for phased arrays of optical telescopes," J. Opt. Soc. Am. A 13, 2367-2374 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. T. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. Antennas Propag. AP-16, 172–175 (1968). [CrossRef]
  2. M. J. E. Golay, “Point arrays having compact, nonredun-dant autocorrelations,” J. Opt. Soc. Am. 61, 272–273 (1971). [CrossRef]
  3. T. J. Cornwell, “A novel principle for optimization of the instantaneous Fourier plane coverage of correlation arrays,” IEEE Trans. Antennas Propag. AP-36, 1165–1167 (1988). [CrossRef]
  4. A. Lannes, É. Anterrieu, L. Koechlin, G. Fitoussi, “On the concept of field-to-resolution ratio in aperture synthesis,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerutti-Maori, P. Roussel, eds., Proc. SPIE2209, 402–412 (1994). [CrossRef]
  5. R. V. Shack, J. D. Rancourt, H. Morrow, “Effects of dilution on a six-element synthetic aperture,” Appl. Opt. 10, 257–259 (1971). [CrossRef] [PubMed]
  6. A. B. Meinel, M. P. Meinel, N. J. Woolf, “Multiple aperture telescope diffraction images,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1983), Vol. 9, Chap. 5, pp. 149–201. [CrossRef]
  7. J. E. Harvey, A. B. Wissinger, A. N. Bunner, “A parametric study of various synthetic aperture telescope configurations for coherent imaging applications,” in Infrared, Adaptive, and Synthetic Aperture Optical Systems, R. B. Johnson, W. L. Wolfe, J. S. Fender, eds., Proc. SPIE643, 194–207 (1986). [CrossRef]
  8. A. Labeyrie, G. Lemaitre, L. Kœchlin, “The optical very large array,” in Advanced Technology Optical Telescopes III, L. D. Barr, ed., Proc. SPIE628, 323–332 (1986). [CrossRef]
  9. J. E. Harvey, R. A. Rockwell, “Performance characteristics of phased arrays and thinned aperture optical telescopes,” Opt. Eng. (Bellingham) 27, 762–768 (1988). [CrossRef]
  10. S. M. Watson, J. P. Mills, “Two-point resolution criterion for multiaperture optical telescopes,” J. Opt. Soc. Am. A 5, 893–903 (1988). [CrossRef]
  11. P. Y. Bely, “HARDI: a high angular resolution deployable interferometer for space,” in New Technologies for Astronomy, J.-P. Swings, ed., Proc. SPIE1130, 92–100 (1989). [CrossRef]
  12. ESO/VLT Interferometry Panel, “The VLT Interferometer Implementation Plan,” VLT Report 59b (European Southern Observatory, Garching, Germany, 1989).
  13. M. Faucherre, F. Merkle, F. Vakili, “Beam combination in aperture synthesis from space: field of view limitations and (u, υ) plane coverage optimization,” in New Technologies for Astronomy, J.-P. Swings, ed., Proc. SPIE1130, 138–145 (1989). [CrossRef]
  14. J. P. Fitch, T. W. Lawrence, “Placement of multiple apertures for imaging telescopes,” in Amplitude and Intensity Spatial Interferometry, J. B. Breckinridge, ed., Proc. SPIE1237, 61–69 (1990). [CrossRef]
  15. L. Damé, T.-D. Guyenne, “Study of an optimized configuration for interferometric imaging of complex and extended solar structures,” in Targets for Space-Based Interferometry (European Space Agency, Noordwijk, The Netherlands, 1992), Vol. SP-354, pp. 201–208.
  16. J. M. Beckers, F. Merkle, eds., High-Resolution Imaging by Interferometry II. Part II: Multiple Aperture Interferometry, No. 39 of ESO Conference and Workshop Proceedings (European Southern Observatory, Garching, Germany, 1992).
  17. J. B. Breckinridge, ed., Amplitude and Intensity Spatial In-terferometry II, Proc. SPIE 2200 (1994).
  18. A. Lannes, S. Roques, M.-J. Casanove, “Stabilized reconstruction in image and signal processing; part I: partial deconvolution and spectral extrapolation with limited field,” J. Mod. Opt. 34, 161–226 (1987). [CrossRef]
  19. L. M. Mugnier, G. Rousset, “Pupil configuration opti-mality criterion in synthetic aperture optics,” in Spaceborne Interferometry II, R. D. Reasenberg, ed., Proc. SPIE2477, 124–131 (1995). [CrossRef]
  20. W. A. Traub, “Combining beams from separated telescopes,” Appl. Opt. 25, 528–532 (1986). [CrossRef] [PubMed]
  21. G. Demoment, “Image reconstruction and restoration: overview of common estimation structures and problems,” IEEE Trans. Acoust. Speech Signal Process. 37, 2024–2036 (1989). [CrossRef]
  22. V. Trénoguine, Analyse Fonctionnelle (Mir, Moscow, 1985).
  23. L. Schwartz, Analyse—Topologie Générale et Analyse Fonctionnelle, No. 11 of Collection Enseignement des Sciences (Hermann, Paris, 1970).
  24. A. K. Katsaggelos, “Iterative image restoration algorithms,” Opt. Eng. (Bellingham) 28, 735–748 (1989). [CrossRef]
  25. B. R. Hunt, “The application of constrained least squares estimation to image restoration by digital computer,” IEEE Trans. Comp. C-22, 805–812 (1973). [CrossRef]
  26. C. K. Rushforth, “Signal restoration, functional analysis, and Fredholm integral equations of the first kind,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, 1987), Chap. 1.
  27. A. Papoulis, Signal Analysis (McGraw-Hill, New-York, 1977).
  28. C. Perrier, “Amplitude estimation from speckle interferometry,” in Proceedings of the NATO Advanced Study Institute on Diffraction-Limited Imaging with Very Large Telescopes, D. M. Allouin, J.-M. Mariotti, eds., Vol. 274 of Series C: Mathematical and Physical Sciences(Kluwer, Dordrecht, The Netherlands, 1989), pp. 99–111. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited