OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 13, Iss. 5 — May. 1, 1996
  • pp: 952–961

Efficient Monte Carlo simulation of confocal microscopy in biological tissue

J. M. Schmitt and K. Ben-Letaief  »View Author Affiliations

JOSA A, Vol. 13, Issue 5, pp. 952-961 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A variance-reduction technique is described that greatly improves the efficiency of Monte Carlo simulations of reflection-mode confocal microscopy in anisotropically scattering media. The efficiency gain is large enough that the performance of confocal microscopes probing as deep as 5 scattering lengths can be simulated with a desktop computer. We use the technique to simulate the response of a true confocal microscope probing biological tissue, a problem that has been impractical to undertake by using conventional Monte Carlo methods. Our most important finding is that operation of a confocal microscope in the true confocal mode enables much more effective rejection of undesired scattered light than operation in the partially coherent mode, but the maximum probing depths of microscopes operated in either mode are similar (2–3 scattering lengths) in practice because of sensitivity limitations.

© 1996 Optical Society of America

Original Manuscript: June 29, 1995
Revised Manuscript: October 23, 1995
Manuscript Accepted: October 25, 1995
Published: May 1, 1996

J. M. Schmitt and K. Ben-Letaief, "Efficient Monte Carlo simulation of confocal microscopy in biological tissue," J. Opt. Soc. Am. A 13, 952-961 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—1. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989). [CrossRef] [PubMed]
  2. H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991). [CrossRef] [PubMed]
  3. G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994). [CrossRef] [PubMed]
  4. K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976). [CrossRef]
  5. H. R. Gordon, “Absorption and scattering estimates from irradiance measurements: Monte Carlo simulations,” Limnol. Oceanogr. 36, 769–777 (1991). [CrossRef]
  6. W. F. Cheong, S. A. Prahl, A. J. Walsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elctron. 26, 2166–2185 (1990). [CrossRef]
  7. R. L. Fante, “Electromagnetic propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975). [CrossRef]
  8. J. M. Schmitt, A. Knüttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994). [CrossRef]
  9. J. M. Schmitt, A. Knüttel, M. Yadlowsky, M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994). [CrossRef] [PubMed]
  10. T. Duracz, N. J. McCormick, “Multiple scattering corrections for lidar detection of obscured objects,” Appl. Opt. 29, 4170–4175 (1990). [CrossRef] [PubMed]
  11. P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system,” J. Mod. Opt. 38, 129–142 (1991). [CrossRef]
  12. P. Bruscaglioni, P. Donelli, A. Ismaelli, G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32, 2813–2824 (1993). [CrossRef] [PubMed]
  13. One normalized optical unit is equal to λ/2π(NA), where λis the illumination wavelength and NA is the numerical aperture of the microscope. See M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1983).
  14. C. J. R. Sheppard, M. Gu, “Imaging performance of confocal fluorescence microscopes with finite-sized source,” J. Mod. Opt. 41, 1521–1530 (1994). [CrossRef]
  15. J. M. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993). [CrossRef] [PubMed]
  16. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  17. T. Wilson, R. Juskaitis, “Scanning interference microscopy,” Bioimaging 2, 36–40 (1994). [CrossRef]
  18. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, B. S. Elepov, Monte Carlo Methods in Atmospheric Optics (Springer-Verlag, New York, 1980), Chap. 4. [CrossRef]
  19. M. C. Jeruchim, P. M. Hahn, K. P. Smyntek, R. T. Ray, “An experimental investigation of conventional and efficient importance sampling,” IEEE Trans. Commun. 37, 578–587 (1989). [CrossRef]
  20. K. Ben-Letaief, J. S. Sadowsky, “New importance sampling methods for simulating sequential decoders,” IEEE Trans. Inf. Theory 39, 1716–1722 (1993). [CrossRef]
  21. K. Ben-Letaief, “Performance analysis of digital lightwave systems using efficient computer simulation techniques,” IEEE Trans. Commun. 43, 240–251 (1995). [CrossRef]
  22. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1990), Chap. 7.
  23. S. Hell, G. Reiner, C. Cremer, E. H. K. Steltzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. (Oxford) 169, 391–405 (1993). [CrossRef]
  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vettering, Numerical Recipes in C (Cambridge U. Press, New York, 1988), Chap. 7, pp. 216–217.
  25. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987). [CrossRef] [PubMed]
  26. C. J. R. Sheppard, “Stray light and noise in confocal microscopy,” Micron Microsc. Acta 22, 239–243 (1991). [CrossRef]
  27. T. Sawatari, “Optical heterodyne scanning microscopy,” Appl. Opt. 12, 2766–2772 (1973). [CrossRef]
  28. Y. Fujii, H. Takimoto, T. Igarashi, “Optimum resolution of laser microscope by using optical heterodyne detection,” Opt. Commun. 38, 85–90 (1981). [CrossRef]
  29. J. M. Schmitt, A. Knüttel, M. Yadlowsky, M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited