OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 13, Iss. 7 — Jul. 1, 1996
  • pp: 1345–1356

Effects of saturation on the nonlinear incoherent-erasure joint-transform correlator

George Asimellis, Jehad Khoury, and Charles Woods  »View Author Affiliations


JOSA A, Vol. 13, Issue 7, pp. 1345-1356 (1996)
http://dx.doi.org/10.1364/JOSAA.13.001345


View Full Text Article

Enhanced HTML    Acrobat PDF (7218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A photorefractive nonlinear joint-transform correlator based on the incoherent-to-coherent conversion is presented and analyzed. The nonlinearity of this incoherent-erasure joint-transform correlator (IEJTC) is tunable from the classical-matched to the phase-extraction limit. Correlation peak intensity, sharpness, and discrimination ability increase with the incoherent beam intensity. At easily achievable incoherent-to-coherent beam intensity ratios the IEJTC has its optimal performance, at which the IEJTC approaches the performance of the inverse filter for clean inputs and surpasses the inverse filter performance for noisy inputs. We examine this nonlinearity by using the transform method of analysis and computer simulations. Our study focuses on the effect of saturation on the correlation ability. Our results provide an explanation of why extending the severity of saturation by increasing the incoherent-to-coherent intensity ratio beyond a turning point results in lower optical efficiency, degraded correlation peak, and increased higher-order harmonics.

© 1996 Optical Society of America

History
Original Manuscript: November 8, 1995
Revised Manuscript: January 2, 1996
Manuscript Accepted: January 29, 1996
Published: July 1, 1996

Citation
George Asimellis, Jehad Khoury, and Charles Woods, "Effects of saturation on the nonlinear incoherent-erasure joint-transform correlator," J. Opt. Soc. Am. A 13, 1345-1356 (1996)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-13-7-1345


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Khoury, G. Asimellis, C. Woods, “Incoherent-erasure joint-transform correlator,” Opt. Lett. 20, 2321–2323 (1995). [CrossRef] [PubMed]
  2. Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3667 (1983). [CrossRef] [PubMed]
  3. J. Khoury, M. Cronin-Golomb, P. Gianino, C. Woods, “Photorefractive two-beam coupling nonlinear joint-transform correlator,” J. Opt. Soc. Am. B 11, 2167–2174 (1994). [CrossRef]
  4. J. Khoury, J. Kane, G. Asimellis, M. Cronin-Golomb, C. Woods, “All optical nonlinear joint Fourier transform correlator,” Appl. Opt. 33, 8216–8225 (1994). [CrossRef] [PubMed]
  5. G. Asimellis, M. Cronin-Golomb, J. Khoury, J. Kane, C. Woods, “Analysis of the dual discrimination ability of the two-port photorefractive joint transform correlator,” Appl. Opt. 34, 8154–8166 (1995). [CrossRef] [PubMed]
  6. G. Asimellis, J. Khoury, J. Kane, C. Woods, “Two-port photorefractive joint-transform correlator,” Opt. Lett. 20, 2517–2519 (1995). [CrossRef] [PubMed]
  7. D. O. North, “An analysis of the factors which determine signal/noise discriminations in pulsed carrier systems,” Proc. IEEE 51, 1016–1027 (1963). [CrossRef]
  8. K. H. Fielding, J. L. Horner, “Clutter effects in optical correlators,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. SPIE1151, 130–137 (1990). [CrossRef]
  9. A. Tanone, C. M. Uang, F. T. S. Yu, E. C. Tam, D. A. Gregory, “Effects of thresholding in joint-transform correlation,” Appl. Opt. 31, 4816–4822 (1992). [CrossRef] [PubMed]
  10. H. Rajbenbach, “Dynamic holography in optical pattern recognition,” in Optical Pattern Recognition V, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2237, 329–346 (1994). [CrossRef]
  11. J. L. Horner, USAF Rome Laboratories, Optical Signal Processing Branch (personal communication, 1995).
  12. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  13. J. E. Rau, “Detection of difference in real distributions,”J. Opt. Soc. Am. 56, 1490–1494 (1966). [CrossRef]
  14. D. A. Gregory, “Real-time pattern recognition using a modified LCTV in a coherent optical correlator,” Appl. Opt. 25, 467–468 (1986). [CrossRef] [PubMed]
  15. B. Javidi, J. L. Horner, “Single SLM joint transform correlator,” Opt. Eng. 28, 1027–1032 (1989).
  16. B. Javidi, J. Wang, “Design of filters to detect a noisy target in nonoverlapping background noise,” J. Opt. Soc. Am. A 11, 2604–2612 (1994). [CrossRef]
  17. B. Javidi, J. Wang, “Optimum filter for detection of a target in nonoverlapping scene noise,” Appl. Opt. 33, 4454–4458 (1994). [CrossRef] [PubMed]
  18. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef] [PubMed]
  19. T. J. Grycewicz, “Applying time modulation to the joint transform correlator,” Opt. Eng. 33, 1813–1820 (1994). [CrossRef]
  20. M. S. Alam, M. A. Karim, “Joint-transform correlation under varying illumination,” Appl. Opt. 32, 4351–4356 (1993). [CrossRef] [PubMed]
  21. F. Cheng, P. Andres, F. T. S. Yu, D. A. Gregory, “Intensity compensation fiber for joint transform correlation peak enhancement,” Appl. Opt. 32, 4357–4364 (1993). [CrossRef] [PubMed]
  22. H. Rajbenbach, S. Bann, J. P. Huignard, “A compact photorefractive joint transform correlator for industrial recognition tasks,” in Optical Computing, Vol. 6 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 260–263.
  23. J. O. White, A. Yariv, “Real-time image processing via four-wave mixing,” Appl. Phys. Lett. 37, 5–7 (1980). [CrossRef]
  24. M. R. Weiss, A. Siahmakoun, “Autocorrelation via two-wave mixing in barium titanate,” Opt. Eng. 30, 403–406 (1991). [CrossRef]
  25. D. A. Jared, K. M. Johnson, G. Moddel, “Joint transform correlator using amorphous silicon ferroelectric liquid crystal spatial modulator,” Opt. Commun. 76, 97–102 (1990). [CrossRef]
  26. T. D. Hudson, D. A. Gregory, “JTC using an optically addressed FLC SLM,” Appl. Opt. 29, 1064–1066 (1990). [CrossRef] [PubMed]
  27. L. Guibert, G. Keryer, A. Servel, M. Attia, H. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “Onboard optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995). [CrossRef]
  28. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–29 (1984). [CrossRef]
  29. F. T. S. Yu, Y. S. Cheng, “White-light joint-transform correlator,” Opt. Lett. 15, 192–194 (1989). [CrossRef]
  30. M. Cronin-Golomb, “Achromatic volume holography using dispersive compensation for grating tilt,” Appl. Opt. 14, 1297–1299 (1989).
  31. M. W. McCall, C. R. Petts, “Grating modification in degenerate four wave mixing,” Opt. Commun. 53, 7–12 (1985). [CrossRef]
  32. N. A. Vianos, R. W. Eason, “Real time enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986). [CrossRef]
  33. A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, “Physical characterization of the photorefractive incoherent-to-coherent optical converter,” Opt. Eng. 24, 124–131 (1985). [CrossRef]
  34. H. Bartlet, J. L. Horner, “Improving binary phase correlation filters using iterative techniques,” Appl. Opt. 24, 2894–2897 (1985). [CrossRef]
  35. J. L. Horner, “Metrics for assessing pattern-recognition performance,” Appl. Opt. 31, 165–166 (1992). [CrossRef] [PubMed]
  36. W. B. Davenport, W. L. Root, An Introduction to the Theory of Random Signal and Noise (McGraw-Hill, New York, 1958).
  37. W. Magnus, F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics (Chelsea, New York, 1966), Vol. I, Chap. 3, Article 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited