OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 13, Iss. 7 — Jul. 1, 1996
  • pp: 1395–1406

Band-gap structure for periodic chiral media

Kevin M. Flood and Dwight L. Jaggard  »View Author Affiliations

JOSA A, Vol. 13, Issue 7, pp. 1395-1406 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study electromagnetic wave interactions in periodic chiral media through an examination of the band-gap structure derived from a coupled-mode solution. For oblique incidence the singly periodic chiral medium possesses three separate fundamental Bragg conditions, which lead to a richer band-gap structure than that observed for its achiral counterpart. We examine these fundamental Bragg conditions in three characteristic domains defined as the subchiral, chiral, and superchiral regions. The conditions defining each region and the band-gap characteristics are presented. The chiral band-gap structure suggests that periodic chiral media may be useful as filters, polarization mode converters, mode discriminators, and multiplexers for circularly polarized waves. It also demonstrates the increased degrees of freedom for the design of distributed-feedback or Bragg-reflection devices.

© 1996 Optical Society of America

Kevin M. Flood and Dwight L. Jaggard, "Band-gap structure for periodic chiral media," J. Opt. Soc. Am. A 13, 1395-1406 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," Philos. Mag. 24, 145–159 (1887).
  2. D. F. Arago, "Sur une modification remarquable qu'eprouvent les rayons lumineux dan leur passage a travers certains corps diaphanes, et sur quelques autres nouveaux phenomenes d'optique," Mem. Inst. 1, 93–134 (1811).
  3. J. B. Biot, "Mémoire sur les rotations que certaines substances impriment aux axes de polarisation des rayons lumineux," Mém. Acad. R. Sci. Inst. Fr. 2, 41 (1817).
  4. L. Pasteur, "Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire," Ann. Chim. Phys. 24, 442–459 (1848).
  5. D. K. Cheng and J. Kong, "Covariant descriptions of bianisotropic media," Proc. IEEE 56, 248–251 (1968). [CrossRef]
  6. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, Time- Harmonic Electromagnetic Fields in Chiral Media, Lecture Notes in Physics 335 (Springer-Verlag, Berlin, 1989).
  7. D. L. Jaggard and N. Engheta, "Chirality in electrodynamics: modeling and applications," in Directions in Electromagnetic Wave Modeling, H. L. Bertoni and L. B. Felsen, eds. (Plenum, New York, 1992).
  8. L. Brillouin, Wave Propagation in Periodic Structures (Dover, New York, 1953).
  9. T. Tamir, H. C. Wang, and A. A. Oliner, "Wave propagation in sinusoidally stratified dielectric media," IEEE Trans. Microwave Theory Tech. MTT-12, 323–335 (1964). [CrossRef]
  10. C. Yeh, K. F. Casey, and Z. A. Kaprielian, "Transverse magnetic wave propagation in sinusoidally stratified dielectric media," IEEE Trans. Microwave Theory Tech. MTT-13, 297–302 (1965). [CrossRef]
  11. D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194–196 (1974). [CrossRef]
  12. R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, "Narrow-band grating filters for thin-film optical waveguides," Appl. Phys. Lett. 25, 651–652 (1974). [CrossRef]
  13. P. S. Cross and H. Kogelnik, "Sidelobe suppression in corrugated-waveguide filters," Opt. Lett. 1, 43–45 (1977). [CrossRef] [PubMed]
  14. H. Kogelnik and C. V. Shank, "Stimulated emission in a periodic structure," Appl. Phys. Lett. 18, 152–154 (1971). [CrossRef]
  15. C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, "Tunable distributed-feedback dye laser," Appl. Phys. Lett. 18, 395–397 (1971). [CrossRef]
  16. H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  17. D. L. Jaggard, N. Engheta, M. W. Kowarz, P. Pelet, J. C. Liu, and Y. Kim, "Periodic chiral structures," IEEE Trans. Antennas Propag. 37, 1447–1452 (1989). [CrossRef]
  18. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, "Propagation along the direction of inhomogeneity in an inhomogeneous chiral medium," Int. J. Eng. Sci. 27, 1267–1273 (1989). [CrossRef]
  19. K. M. Flood and D. L. Jaggard, "Distributed feedback lasers in chiral media," IEEE J. Quantum Electron. 30, 339–345 (1994). [CrossRef]
  20. A. Lakhtakia, V. V. Varadan, and V. K. Varadan, "Scattering by periodic achiral-chiral interfaces," J. Opt. Soc. Am. A 6, 1675–1681 (1989); erratum 7, 951 (1990). [CrossRef]
  21. S. Bassiri, C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. Am. A 5, 1450–1459 (1988). [CrossRef]
  22. D. L. Jaggard, A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Appl. Phys. 18, 211–216 (1979). [CrossRef]
  23. W. H. Bragg and W. L. Bragg, The Crystalline State (Bell, London, 1933).
  24. D. L. Jaggard and X. Sun, "Theory of chiral multilayers," J. Opt. Soc. Am. A 9, 804–813 (1992). [CrossRef]
  25. D. L. Jaggard and C. Elachi, "Floquet and coupled-waves analysis of higher-order Bragg coupling in a periodic medium," J. Opt. Soc. Am. 66, 674–682 (1976). [CrossRef]
  26. I. V. Lindell and A. H. Sihvola, "Generalized WKB approximation for stratified isotropic chiral media," J. Electromagn. Waves Appl. 5, 857–872 (1991).
  27. A. J. Viitanen, I. V. Lindell, and A. H. Sihvola, "Generalized WKB approximation for stratified isotropic chiral media with obliquely incident plane waves," J. Electromagn. Waves Appl. 5, 1105–1121 (1991).
  28. D. L. Jaggard and A. R. Mickelson, "The reflection of electromagnetic waves from almost periodic structures," Appl. Phys. 18, 405–412 (1979). [CrossRef]
  29. D. L. Jaggard, X. Sun, and J. C. Liu, "On the chiral Riccati equation," Microwave Opt. Technol. Lett. 5, 107–112 (1992). [CrossRef]
  30. J. E. Bjorkholm, T. P. Sosnowski, and C. V. Shank, "Distributed-feedback lasers in optical waveguides deposited on anisotropic substrates," Appl. Phys. Lett. 22, 132–134 (1973). [CrossRef]
  31. H. Kogelnik, C. V. Shank, and J. E. Bjorkholm, "Hybrid scattering in periodic waveguides," Appl. Phys. Lett. 22, 135–137 (1973). [CrossRef]
  32. A. H. Sihvola and I. V. Lindell, "Chiral Maxwell-Garnett mixing formula," Electron. Lett. 26, 118–119 (1990). [CrossRef]
  33. C. Elachi and C. Yeh, "Stop bands for optical wave propagation in cholesteric liquid crystals," J. Opt. Soc. Am. 63, 840–842 (1974). [CrossRef]
  34. V. A. Ambarzumian, "Diffuse reflection of light by a foggy medium," C. R. (Dokl.) Acad. Sci. URSS 38, 229–232 (1943).
  35. Equation (A6) includes corrections to the expressions for the off-diagonal terms in the originally published coupling matrix of Ref. 24 [Eq. (7.3)] and Ref. 29 [Eq. (5)]. Errata are to be published.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited