OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 13, Iss. 7 — Jul. 1, 1996
  • pp: 1422–1428

Complex-amplitude modulation by high-carrier-frequency diffractive elements

Eero Noponen and Jari Turunen  »View Author Affiliations


JOSA A, Vol. 13, Issue 7, pp. 1422-1428 (1996)
http://dx.doi.org/10.1364/JOSAA.13.001422


View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Complex-amplitude modulation is necessary if we wish to suppress the noise that surrounds the signal in diffractive optics. This is desirable in, e.g., space-invariant optical interconnection. We present a mathematical scheme to synthesize high-carrier-frequency diffractive elements that perform phase and amplitude modulation of the first carrier-grating order without the use of absorption. The amplitude information is encoded in grating-depth variations and in the phase information in pulse-position modulation. Use of rigorous diffraction theory in the design of the local grating structure ensures virtually noise-free reconstruction with efficiencies that are significantly higher than the values one typically obtains, e.g., by conventional holographic recording.

© 1996 Optical Society of America

History
Original Manuscript: July 17, 1995
Revised Manuscript: January 23, 1996
Manuscript Accepted: January 29, 1996
Published: July 1, 1996

Citation
Eero Noponen and Jari Turunen, "Complex-amplitude modulation by high-carrier-frequency diffractive elements," J. Opt. Soc. Am. A 13, 1422-1428 (1996)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-13-7-1422


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Wyrowski, O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481–1571 (1991). [CrossRef]
  2. M. R. Taghizadeh, J. Turunen, “Synthetic diffractive elements for optical interconnection,” Opt. Comput. Process. 2, 221–242 (1992).
  3. F. Wyrowski, “Consideration on convolutions and phase factors,” Opt. Commun. 81, 353–358 (1991). [CrossRef]
  4. D. C. Chu, J. R. Fienup, J. W. Goodman, “Multi-emulsion on-axis computer-generated hologram,” Appl. Opt. 12, 1386–1388 (1973). [CrossRef] [PubMed]
  5. A. W. Lohmann, D. B. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967). [CrossRef] [PubMed]
  6. J. P. Kirk, A. L. Jones, “Phase-only complex-valued spatial filter,”J. Opt. Soc. Am. 61, 1023–1028 (1971). [CrossRef]
  7. E. V. Jull, J. W. Heath, G. R. Ebbeson, “Gratings that diffract all incident energy,”J. Opt. Soc. Am. 67, 557–560 (1977). [CrossRef]
  8. E. G. Loewen, M. Nevière, D. Maystre, “Efficiency optimization of rectangular groove gratings for use in the visible and IR regions (TE),” Appl. Opt. 18, 2262–2266 (1979). [CrossRef] [PubMed]
  9. J. Turunen, P. Blair, J. M. Miller, M. R. Taghizadeh, E. Noponen, “Bragg holograms with binary surface-relief profile,” Opt. Lett. 18, 1022–1024 (1993). [CrossRef] [PubMed]
  10. E. Noponen, J. Turunen, “Binary high-frequency-carrier diffractive optical elements: electromagnetic theory,” J. Opt. Soc. Am. A 11, 1097–1109 (1994). [CrossRef]
  11. E. Tervonen, J. Turunen, J. Pekola, “Pulse-frequency-modulated high-frequency-carrier diffractive elements for pattern projection,” Opt. Eng. 33, 2579–2587 (1994). [CrossRef]
  12. P. Blair, M. R. Taghizadeh, W. Parkes, C. D. W. Wilkinson, “High-efficiency binary fan-out gratings by modulation of a high-frequency carrier grating,” Appl. Opt. 34, 2406–2413 (1995). [CrossRef] [PubMed]
  13. P. Ehbets, H. P. Herzig, P. Nussbaum, P. Blattner, R. Dändliker, “Interferometric fabrication of modulated submicron gratings in photoresist,” Appl. Opt. 34, 2540–2547 (1995). [CrossRef] [PubMed]
  14. P. Ehbets, H. P. Herzig, M. Kuittinen, F. S. M. Clube, Y. Darbellay, “High-carrier-frequency fan-out gratings fabricated by TIR holographic lithography,” Opt. Eng. 34, 2377–2383 (1995). [CrossRef]
  15. F. Wyrowski, “Upper bound of the efficiency of diffractive phase elements,” Opt. Lett. 16, 1915–1917 (1991). [CrossRef] [PubMed]
  16. E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992). [CrossRef]
  17. E. Noponen, J. Turunen, F. Wyrowski, “Synthesis of paraxial-domain diffractive elements by rigorous electromagnetic theory,” J. Opt. Soc. Am. A 12, 1128–1133 (1995). [CrossRef]
  18. R. Waldhäusl, P. Dannberg, E. B. Kley, A. Bräuer, W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).
  19. E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays” J. Opt. Soc. Am. A 10, 434–443 (1993). [CrossRef]
  20. R. A. Bartolini, “Characteristics of relief phase holograms recorded in photoresist,” Appl. Opt. 13, 129–139 (1974). [CrossRef] [PubMed]
  21. H. Bartelt, S. K. Case, “High-efficiency hybrid computer-generated holograms,” Appl. Opt. 21, 2886–2890 (1982). [CrossRef] [PubMed]
  22. B. Robertson, J. Turunen, H. Ichikawa, J. M. Miller, M. R. Taghizadeh, A. Vasara, “Hybrid kinoform fanout holograms in dichromated gelatin,” Appl. Opt. 30, 3711–3720 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited