OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 13, Iss. 8 — Aug. 1, 1996
  • pp: 1719–1727

Diffraction length of localized waves generated by dynamic apertures

Sherif M. Sedky, Amr M. Shaarawi, Ioannis M. Besieris, and Fawzia M. M. Taiel  »View Author Affiliations


JOSA A, Vol. 13, Issue 8, pp. 1719-1727 (1996)
http://dx.doi.org/10.1364/JOSAA.13.001719


View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A definition of the diffraction length characterizing the propagation of localized wave pulses launched from dynamic apertures is provided. Our inference of the diffraction range is based on an analysis of the spectral depletion of the spatial frequency components of the pulse as it propagates away from its source. We demonstrate the efficacy of our procedure by showing that it is capable of capturing some decay features of localized wave pulses that may be missed by other approaches.

© 1996 Optical Society of America

History
Original Manuscript: July 14, 1995
Revised Manuscript: December 4, 1995
Manuscript Accepted: February 23, 1996
Published: August 1, 1996

Citation
Sherif M. Sedky, Ioannis M. Besieris, Fawzia M. M. Taiel, and Amr M. Shaarawi, "Diffraction length of localized waves generated by dynamic apertures," J. Opt. Soc. Am. A 13, 1719-1727 (1996)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-13-8-1719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Ziolkowski, I. M. Besieris, A. M. Shaarawi, “Aperture realizations of the exact solutions to homogeneous-wave equations,” J. Opt. Soc. Am. A 10, 75–87 (1993). [CrossRef]
  2. A. M. Shaarawi, I. M. Besieris, R. W. Ziolkowski, “Localized energy pulse trains launched from an open, semi-infinite, circular waveguide,” J. Appl. Phys. 65, 805–813 (1988). [CrossRef]
  3. J. E. Hernandez, R. W. Ziolkowski, S. R. Parker, “Synthesis of the driving functions of an array for propagating localized wave energy,”J. Acoust. Soc. Am. 92, 550–562 (1992). [CrossRef]
  4. R. W. Ziolkowski, D. K. Lewis, B. D. Cook, “Experimental verification of the localized wave transmission effect,” Phys. Rev. Lett. 62, 147–150 (1989). [CrossRef] [PubMed]
  5. R. W. Ziolkowski, “Localized transmission of electromagnetic energy,” Phys. Rev. A 39, 2005–2033 (1989). [CrossRef] [PubMed]
  6. R. W. Ziolkowski, “Localized wave physics and engineering,” Phys. Rev. A 44, 3960–3984 (1991). [CrossRef] [PubMed]
  7. R. Donnelly, R. Ziolkowski, “A method for constructing solutions of homogeneous partial differential equations: localized waves,” Proc. R. Soc. London Ser. A 437, 673–692 (1992). [CrossRef]
  8. R. W. Ziolkowski, D. K. Lewis, “Verification of the localized wave transmission effect,” J. Appl. Phys. 68, 6083–6086 (1990). [CrossRef]
  9. R. W. Ziolkowski, I. M. Besieris, A. M. Shaarawi, “Localized wave representations of acoustic and electromagnetic radiation,” Proc. IEEE 79, 1371–1378 (1991). [CrossRef]
  10. A. M. Vengsarkar, I. M. Besieris, A. M. Shaarawi, R. W. Ziolkowski, “Closed-form localized wave solutions in optical fiber waveguides,” J. Opt. Soc. Am. A 9, 937–949 (1992). [CrossRef]
  11. M. R. Palmer, R. Donnelly, “Focused wave modes and the scalar wave equation,”J. Math. Phys. 34, 4007–4013 (1993). [CrossRef]
  12. A. M. Shaarawi, I. M. Besieris, R. W. Ziolkowski, S. M. Sedky, “Generation of approximate focused-wave-mode pulses from wide-band dynamic Gaussian apertures,” J. Opt. Soc. Am. A 12, 1954–1964 (1995). [CrossRef]
  13. A. M. Shaarawi, R. W. Ziolkowski, I. M. Besieris, “On the evanescent fields and the causality of the focused wave modes,”J. Math. Phys. 36, 5565–5587 (1995). [CrossRef]
  14. B. Hafizi, P. Sprangle, “Diffraction effects in directed radiation beams,” J. Opt. Soc. Am. A 8, 705–717 (1991). [CrossRef]
  15. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  16. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Sec. 11.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited