OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 13, Iss. 8 — Aug. 1, 1996
  • pp: 1737–1748

Zigzag analysis of interference effects in an arbitrarily oriented biaxial single layer

Gary D. Landry and Theresa A. Maldonado  »View Author Affiliations


JOSA A, Vol. 13, Issue 8, pp. 1737-1748 (1996)
http://dx.doi.org/10.1364/JOSAA.13.001737


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A wave-vector zigzag analysis is developed to investigate the complicated interference effects among the four extraordinary waves in a biaxial slab with general principal-axes orientation; the four corresponding zigzag Poynting vectors have distinct walk-off directions. Expressions for transmission and reflection coefficients, analogous to Airy’s summation for isotropic slabs, are determined for an arbitrarily oriented linearly polarized monochromatic plane wave at oblique incidence. A KTP slab is analyzed with the derived method, and the results are compared with those obtained with the 4 × 4 matrix method. Some common applications of this theory include analysis of multilayer structures and waveguides.

© 1996 Optical Society of America

History
Original Manuscript: September 12, 1995
Revised Manuscript: March 11, 1996
Manuscript Accepted: February 12, 1996
Published: August 1, 1996

Citation
Gary D. Landry and Theresa A. Maldonado, "Zigzag analysis of interference effects in an arbitrarily oriented biaxial single layer," J. Opt. Soc. Am. A 13, 1737-1748 (1996)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-13-8-1737


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Weis, T. K. Gaylord, “Fabry–Perot/Solč filter with distributed Bragg reflectors: a narrow-band electro-optically tunable spectral filter,” J. Opt. Soc. Am. A 5, 1565–1570 (1988). [CrossRef]
  2. R. S. Weis, T. K. Gaylord, “Electromagnetic transmission and reflection characteristics of anisotropic multilayered structures,” J. Opt. Soc. Am. A. 4, 1720–1739 (1987). [CrossRef]
  3. X. Wang, J. Yao, “Transmitted and tuning characteristics of birefringent filters,” Appl. Opt. 31, 4505–4508 (1992). [CrossRef] [PubMed]
  4. See, for example, L. Thylén, “Integrated optics in LiNbO3: recent developments in devices in telecommunications,” J. Lightwave Technol. 6, 847–861 (1988). [CrossRef]
  5. F. Flory, D. Endelema, E. Pelletier, I. Hodgkinson, “Anisotropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2films,” Appl. Opt. 32, 5649–5659 (1993). [CrossRef] [PubMed]
  6. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991). See, for example, P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  7. R. S. Weis, T. K. Gaylord, “Magnetooptic multilayered memory structure with a birefringent superstate: a rigorous analysis,” Appl. Opt. 28, 1926–1930 (1989). [CrossRef] [PubMed]
  8. Z. M. Li, B. T. Sullivan, R. R. Parsons, “Use of the 4 × 4 matrix method in the optics of multilayer magnetooptic recording media,” Appl. Opt. 27, 1334–1338 (1988). [CrossRef] [PubMed]
  9. J. Staromlynska, “A double-element broad-band liquid crystal tunable filter—factors affecting contrast ratio,” IEEE J. Quantum Electron. 28, 501–506 (1992). [CrossRef]
  10. D. W. Berreman, “Optics in smoothly varying anisotropic planar structures: application to liquid-crystal twist cells,”J. Opt. Soc. Am. 63, 1374–1379 (1973). [CrossRef]
  11. C. H. Kwak, J. T. Kim, S. S. Lee, “Nonlinear optical image processing in photoanisotropic amorphous As2S3thin film,” Appl. Opt. 28, 737–739 (1989). [CrossRef] [PubMed]
  12. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 6, pp. 205–208.
  13. T. A. Maldonado, T. K. Gaylord, “Electro-optic effect calculations: a simplified procedure for arbitrary cases,” Appl. Opt. 27, 5051–5066 (1988). [CrossRef] [PubMed]
  14. See, for example, Organic Thin Films for Photonic Applications, 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).
  15. D. W. Berreman, “Optics in stratified and anisotropic media,”J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  16. P. Yeh, “Electromagnetic propagation in birefringent layered media,”J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  17. K. Hano, “Zigzag ray model of hybrid modes in thin-film optical waveguides with uniaxial anisotropic substrates,” J. Opt. Soc. Am. A 4, 1887–1894 (1987). [CrossRef]
  18. A. Knoesen, M. G. Moharam, T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals: surface impedance/admittance approach,” Appl. Phys. B 38, 171–178 (1985). [CrossRef]
  19. T. A. Maldonado, T. K. Gaylord, “Hybrid guided modes in biaxial slab waveguides,” IEEE J. Lightwave Technol. 14, 486–499 (1996). [CrossRef]
  20. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 4, pp. 86–97.
  21. R. M. A. Azzam, N. H. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  22. G. D. Landry, T. A. Maldonado, “Complete method to determine transmission and reflection characteristics at a planar interface between arbitrarily oriented biaxial media,” J. Opt. Soc. Am. A 12, 2048–2063 (1995). [CrossRef]
  23. J. H. Jellet, S. Haughton, eds., The Collected Works of James MacCullagh (Hodges, Figgis, Dublin, 1880).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited