Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media

Not Accessible

Your library or personal account may give you access

Abstract

The statistical estimator concept, created in the nuclear engineering field, has been adapted to the elaboration of a new and fast semianalytical Monte Carlo numerical simulation for time-resolved light-scattering problems. This concept has also been generalized to the case of unmatched boundaries. The model, discussed in detail in this paper, contains two stages. The first stage is the information generator in which, for each scattering event, the contribution to the total reflectance and transmittance is evaluated and subtracted from the photon current energy. This procedure reduces the number of photons required to produce a given accuracy, which makes it possible to store all event positions and energies. In the second stage, called the information processor, the results of the first stage are used to calculate analytically any desired result. Examples are given for scattering slabs of isotropic or anisotropic scatterers when collimated-beam incidence is used. Reflections at the boundaries are taken into account. The results obtained either with this new method or with classical Monte Carlo methods are very similar. However, the convergence of our new model is much better and, because of the separation into two stages, any quantity related to the problem can be easily calculated afterward without recomputing the simulation.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media

Quan Liu and Nirmala Ramanujam
J. Opt. Soc. Am. A 24(4) 1011-1025 (2007)

Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media

Lihong Wang and Steven L. Jacques
J. Opt. Soc. Am. A 10(8) 1746-1752 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved