OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 14, Iss. 1 — Jan. 1, 1997
  • pp: 192–215

Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation

D. A. Boas and A. G. Yodh  »View Author Affiliations

JOSA A, Vol. 14, Issue 1, pp. 192-215 (1997)

View Full Text Article

Acrobat PDF (640 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The diffusion of correlation is used to detect, localize, and characterize dynamical and optical spatial inhomogeneities in turbid media and is accurately modeled by a correlation diffusion equation. We demonstrate experimentally and with Monte Carlo simulations that the transport of correlation can be viewed as a correlation wave {analogous to a diffuse photon-density wave [Phys. Today 48, 34 (1995)]} that propagates spherically outward from sources and scatters from macroscopic spatial variations in dynamical and/or optical properties. We demonstrate the utility of inverse scattering algorithms for reconstructing images of the spatially varying dynamical properties of turbid media. The biomedical applicability of this diffuse correlation probe is illustrated in studies of the depth of burned tissues.

© 1997 Optical Society of America

D. A. Boas and A. G. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," J. Opt. Soc. Am. A 14, 192-215 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
  2. B. Chance, ed., Photon Migration in Tissues (Plenum, New York, 1989).
  3. B. J. Tromberg, L. O. Svaasand, T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993).
  4. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
  5. G. A. Millikan, “Experiments on muscle haemoglobin in vivo: the instantaneous measurement of muscle metabolism,” Proc. R. Soc. London, Sect. B 129, 218–241(1937).
  6. G. A. Millikan, “The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man,” Rev. Sci. Instrum. 13, 434–444 (1942).
  7. F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
  8. J. M. Schmitt, “Simple photon diffusion analysis of the effects of multiple scattering on pulse oximetry,” IEEE Trans. Biomed. Eng. 38, 1194–1203 (1991).
  9. M. R. Neuman, “Pulse oximetry: physical principles technical realization and present limitations,” Adv. Exp. Med. Biol. 220, 135–144 (1987).
  10. J. W. Severinghaus, “History and recent developments in pulse oximetry,” Scand. J. Clin. Lab. Invest. 53, 105–111 (1993).
  11. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
  12. B. C. Wilson, E. M. Sevick, M. S. Patterson, and B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
  13. See related studies by S. R. Arridge et el., J. P. Kaltenbach et el.;, and R. L. Barbour et el., in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., Institute Series of SPIE Optical Engineering (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 31–143.
  14. S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. SPIE 1431, 204–215 (1991).
  15. S. P. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-infrared spectroscopic localization of intracranial hematomas,” J. Neurosurg. 79, 43–47 (1993).
  16. A. P. Shepherd and P. A. Oberg, eds., Laser-Doppler Blood Flowmetry (Kluwer Academic, Boston, Mass., 1990).
  17. L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).
  18. G. V. Belcaro, U. Hoffmann, A. Bollinger, and A. N. Nicolaides, eds., Laser Doppler (Med-Orion, London, 1994).
  19. A. D. Edwards, C. Richardson, P. van der Zee, M. Cope, and D. T. Delpy, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol. 75, 1884–1889 (1993).
  20. N. A. Clark, J. H. Lunacek, and G. B. Benedek, “A study of Brownian motion using light scattering,” Am. J. Phys. 38, 575–585 (1970).
  21. P. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  22. B. J. Berne and R. Pecora, in Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Krieger, Malabar, Fla., 1990).
  23. W. Brown, ed., Dynamic Light Scattering: The Method and Some Applications (Clarendon, New York, 1993).
  24. G. G. Fuller, J. M. Rallison, R. L. Schmidt, and L. G. Leal, “The measurement of velocity gradients in laminar flow by homodyne light-scattering spectroscopy,” J. Fluid Mech. 100, 555–575 (1980).
  25. P. Tong, W. I. Goldburg, C. K. Chan, and A. Sirivat, “Turbulent transition by photon-correlation spectroscopy,” Phys. Rev. A 37, 2125–2133 (1988).
  26. M. Bertolotti, B. Crosignani, P. Di, Porto, and D. Sette, “Light scattering by particles suspended in a turbulent fluid,” J. Phys. A 2, 126–128 (1969).
  27. P. J. Bourke, J. Butterworth, L. E. Drain, P. A. Egelstaff, E. Jakeman, and E. R. Pike, “A study of the spatial structure of turbulent flow by intensity-fluctuation spectroscopy,” J. Phys. A 3, 216–228 (1970).
  28. T. Tanaka, C. Riva, and I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
  29. M. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature (London) 254, 56–58 (1975).
  30. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
  31. H. Z. Cummings and E. R. Pike, eds., Photon Correlation and Light-Beating Spectroscopy, Vol. 3 of NATO Advanced Study Institute Series B: Physics (Plenum, New York, 1974).
  32. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
  33. F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B 40, 2382–2406 (1989).
  34. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
  35. A. Y. Val’kov and V. P. Romanov, “Characteristics of propagation and scattering of light in nematic liquid crystals,” Sov. Phys. JETP 63, 737–743 (1986) [Zh. Eksp. Teor. Fiz. 90, 1264–1274 (1986)].
  36. P. N. Pusey and J. M. Vaughan, “Light scattering and intensity fluctuation spectroscopy,” in Specialist Periodical Report, Vol. 2 of Dielectric and Related Molecular Processes. M. Davies, ed. (The Chemical Society, London, 1975).
  37. S. O. Rice, “Mathematical analysis of random noise,” in Noise and Stochastic Processes, N. Wax, ed. (Dover, New York, 1954), p. 133.
  38. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
  39. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. dissertation (Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pa., 1996).
  40. D. A. Boas, I. V. Meglinsky, L. Zemany, L. E. Campbell, B. Chance, and A. G. Yodh, “Diffusion of temporal field correlation with selected applications,” in Coherence-Domain Methods in Biomedical Optics, V. V. Tuchin, ed., Proc. SPIE 2732, 34–46 (1996).
  41. D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. A. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63, 1747–1750 (1989).
  42. X. Qiu, X. L. Wu, J. Z. Xue, D. J. Pine, D. A. Weitz, and P. M. Chaikin, “Hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 65, 516–518 (1990).
  43. P. D. Kaplan, A. G. Yodh, and D. J. Pine, “Diffusion and structure in dense binary suspensions.” Phys. Rev. Lett. 68, 393–396 (1992).
  44. J. X. Zhu, D. J. Durian, J. Muller, D. A. Weitz, and D. J. Pine, “Scaling of transient hydrodynamic interactions in concentrated suspensions,” Phys. Rev. Lett. 68, 2559–2562 (1992).
  45. M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70, 242–245 (1993).
  46. S. J. Nilsen and A. P. Gast, “The influence of structure on diffusion in screened Coulombic suspensions,” J. Chem. Phys. 101, 4975–4985 (1994).
  47. A. J. C. Ladd, H. Gang, J. X. Zhu, and D. A. Weitz, “Time-dependent collective diffusion of colloidal particles,” Phys. Rev. Lett. 74, 318–321 (1995).
  48. D. J. Durian, D. A. Weitz, and D. J. Pine, “Multiple light scattering probes of foam structure and dynamics,” Science 252, 686–688 (1991).
  49. A. D. Gopal and D. J. Durian, “Nonlinear bubble dynamics in a slowly driven foam,” Phys. Rev. Lett. 75, 2610–2613 (1995).
  50. H. Gang, A. H. Krall, and D. A. Weitz, “Shape fluctuations of interacting fluid droplets,” Phys. Rev. Lett. 73, 3435–3438 (1994).
  51. P. D. Kaplan, A. G. Yodh, and D. F. Townsend, “Noninvasive study of gel formation in polymer-stabilized dense colloids using multiply scattered light,” J. Colloid Interface Sci. 155, 319–324 (1993).
  52. J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13, 345–350 (1996).
  53. H. Z. Cummings and H. L. Swinney, “Light beating spectroscopy,” Prog. Opt. 8, 133–200 (1970).
  54. P. N. Pusey, J. M. Vaughan, and D. V. Willets, “Effect of spatial incoherence of the laser in photon-counting spectroscopy,” J. Opt. Soc. Am. 73, 1012–1017 (1983).
  55. T. Bellini, M. A. Glaser, N. A. Clark, and V. Degiorgio, “Effects of finite laser coherence in quasielastic multiple scattering,” Phys. Rev. A 44, 5215–5223 (1991).
  56. X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7, 15–20 (1990).
  57. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris) 51, 2101–2127 (1990).
  58. K. Katayama, G. Nishimura, M. Kinjo, and M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1995).
  59. G. Nishimura, K. Katayama, M. Kinjo, and M. Tamura, “Diffusing-wave absorption spectroscopy in the homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).
  60. M. J. Stephen, “Temporal fluctuations in wave propagation in random media,” Phys. Rev. B 37, 1–5 (1988).
  61. B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbman, “Correlation transfer: application of radiative transfer solution methods to photon correlation problems,” J. Thermophys. Heat Transfer 6, 577–588 (1992).
  62. R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer. 52, 713–727 (1994).
  63. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  64. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  65. H. S. Carslaw and J. Jaeger, Conduction of Heat in Solids (Oxford U. Press, New York, 1986).
  66. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  67. J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, and P. M. Chaikin, “Nonergodicity and light scattering from polymer gels,” Phys. Rev. A 46, 6550–6563 (1992).
  68. K. Schatzel, “Accuracy of photon correlation measurements on nonergodic samples,” Appl. Opt. 32, 3880–3885 (1993).
  69. J. G. H. Joosten, E. T. F. Gelade, and P. N. Pusey, “Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels,” Phys. Rev. A 42, 2161–2175 (1990).
  70. P. N. Pusey and W. Van Megen, “Dynamic light scattering by non-ergodic media,” Physica A 157, 705–742 (1989).
  71. E. R. Van Keuren, H. Wiese, and D. Horn, “Diffusing-wave spectroscopy in concentrated latex dispersions: an investigation using single-mode fibers,” Colloids Surf. A 77, 29–37 (1993).
  72. J. Ricka, “Dynamic light scattering with single-mode and multimode fibers,” Appl. Opt. 32, 2860–2875 (1993).
  73. R. G. Brown, “Dynamic light scattering using monomode optical fibers,” Appl. Opt. 26, 4846–4851 (1987).
  74. A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B 43, 5934–5938 (1991).
  75. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E 51, 3350–3358 (1995).
  76. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558 (1994).
  77. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
  78. S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
  79. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Prog. Biomed. 47, 131–146 (1995).
  80. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
  81. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
  82. P. N. den Outer, T. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10, 1209–1218 (1993).
  83. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
  84. A. C. Kak and M. Slaney, in Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).
  85. R. Nossal, S. H. Chen, and C. C. Lai, “Use of laser scattering for quantitative determinations of bacterial motility,” Opt. Commun. 4, 35–39 (1971).
  86. D. Bicout and R. Maynard, “Diffusing wave spectroscopy in inhomogeneous flows,” Physica A 199, 387–411 (1993).
  87. D. Bicout and G. Maret, “Multiple light scattering in Taylor–Couette flow,” Physica A 210, 87–112 (1994).
  88. D. J. Bicout and R. Maynard, “Multiple light scattering in turbulent flow,” Physica B 204, 20–26 (1995).
  89. D. Bicout, “Non-Newtonian behavior of colloidal suspensions from multiple light scattering,” Phys. Lett. A 180, 375–378 (1993).
  90. The Intralipid used here can be obtained from Kabi Pharmacia, Clayton, North Carolina.
  91. R. Nossal, R. F. Bonner, and G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28, 2238–2244 (1989).
  92. H. A. Green, E. E. Burd, N. S. Nishioka, and C. C. Compton, “Skin-graft take and healing following 193-nm excimer, continuous-wave carbon dioxide (CO2), pulsed CO2, or pulsed holmium-YAG laser-ablation of the graft bed,” Arch. Dermatol. 129, 979–988 (1993).
  93. K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967).
  94. B. Davison and J. B. Sykes, Neutron Transport Theory (Oxford U. Press, London, 1957).
  95. S. Glasstone and M. C. Edlund, The Elements of Nuclear Reactor Theory (Van Nostrand, Princeton, N.J., 1952).
  96. J. M. Kaltenbach and M. Kaschke, “Frequency and time domain modelling of light transport in random media,” in Medical Optical Imaging: Functional Imaging and Monitoring, Institute Series of SPIE Optical Engineering (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 65–86.
  97. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Chap. 3.6.
  98. G. B. Arfken, in Mathematical Methods for Physicists (Academic, Orlando, Fla., 1985), Chap. 12.9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited