OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 14, Iss. 1 — Jan. 1, 1997
  • pp: 216–223

Ballistic and diffuse light detection in confocal and heterodyne imaging systems

M. Kempe, A. Z. Genack, W. Rudolph, and P. Dorn  »View Author Affiliations

JOSA A, Vol. 14, Issue 1, pp. 216-223 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The detection of ballistic and diffuse light in confocal and heterodyne imaging systems in transillumination is studied experimentally and theoretically. We find an optimum pinhole size for ballistic light detection and diffuse light rejection for confocal imaging. The ratio of ballistic and diffuse light is found to be determined primarily by sample parameters and aberrations introduced by the sample. For sample and illumination characteristics that are typical for biomedical imaging, the limits of ballistic light detection in confocal imaging are close to the noise limits of standard detectors. Heterodyne detection with narrow-bandwidth light can extend these limits, depending on the spatial and the temporal coherence properties of the transmitted scattered light.

© 1997 Optical Society of America

Original Manuscript: April 16, 1996
Revised Manuscript: July 1, 1996
Manuscript Accepted: June 17, 1996
Published: January 1, 1997

M. Kempe, A. Z. Genack, W. Rudolph, and P. Dorn, "Ballistic and diffuse light detection in confocal and heterodyne imaging systems," J. Opt. Soc. Am. A 14, 216-223 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano, ed., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, DC, 1994).
  2. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993). [CrossRef] [PubMed]
  3. J. M. Schmitt, A. Knuettel, M. Yadlowsky, “Interferometric versus confocal techniques for imaging microstructures in turbid biological media,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 251–262 (1994). [CrossRef]
  4. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  5. M. Kempe, W. Rudolph, “Scanning microscopy through thick layers based on linear correlation,” Opt. Lett. 19, 1919–1921 (1994). [CrossRef] [PubMed]
  6. M. Kempe, W. Rudolph, “Analysis of heterodyne laser scanning microscopy for illumination with broad bandwidth light,“ J. Mod. Opt. (to be published).
  7. J. P. Pawley, ed., Handbook of Biological Confocal Microscopy (Plenum, New York, 1990).
  8. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  9. T. Wilson, ed., Confocal Microscopy (Academic, London, 1991).
  10. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “Fourier spatial filter acts as temporal gate for light propagation through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995). [CrossRef] [PubMed]
  11. H. Horinaka, K. Hashimoto, K. Wada, Y. Cho, M. Osawa, “Extraction of quasistraightforward-propagating photons from diffused light transmitted through a scattering medium by polarization modulation,” Opt. Lett. 20, 1501–1503 (1995). [CrossRef] [PubMed]
  12. S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996). [CrossRef] [PubMed]
  13. K. P. Chan, M. Yamada, B. Devaraj, H. Inaba, “Optical imaging through highly scattering media by use of heterodyne detection in the 1.3-m wavelength region,” Opt. Lett. 20, 492–494 (1995). [CrossRef] [PubMed]
  14. M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996). [CrossRef]
  15. C. J. R. Sheppard, T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (1978). [CrossRef]
  16. R. G. Frehlich, M. K. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  17. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1989).
  19. J. H. Li, A. A. Lisyansky, T. D. Cheung, D. Livdan, A. Z. Genack, “Transmission and surface intensity profiles in random media,” Europhys. Lett. 22, 675–680 (1993). [CrossRef]
  20. J. M. Schmitt, A. Knuettel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited