OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 14, Iss. 1 — Jan. 1, 1997
  • pp: 246–254

Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium

Alwin Kienle and Michael S. Patterson  »View Author Affiliations


JOSA A, Vol. 14, Issue 1, pp. 246-254 (1997)
http://dx.doi.org/10.1364/JOSAA.14.000246


View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Improved solutions of the diffusion equation for time-resolved and steady-state spatially resolved reflectance are investigated for the determination of the optical coefficients of semi-infinite turbid media such as tissue. These solutions are derived for different boundary conditions at the turbid-medium–air interface and are compared with Monte Carlo simulations. Relative reflectance data are fitted in the time domain, whereas relative and absolute reflectance are investigated in the steady-state domain. It is shown that the error in deriving the optical coefficients is, especially for steady-state spatially resolved reflectance, considerably smaller for the solutions under study than for the commonly used solutions. Analysis of experimental measurements of absolute steady-state spatially resolved reflectance confirms these results.

© 1997 Optical Society of America

Citation
Alwin Kienle and Michael S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium," J. Opt. Soc. Am. A 14, 246-254 (1997)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-14-1-246


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Vanhouton, D. A. Benaron, S. Spilman, and D. K. Stevenson, “Imaging brain injuries using time-resolved near-infrared light scanning,” Pediatr. Res. 39, 470–476 (1996).
  2. A. Knüttel, S. Koch, R. Schork, and D. Böcker, “Tissue characterization with optical coherence tomography (OCT),” Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, and T. V. O-Dinh, eds., Proc. SPIE 2676, 54–64 (1996).
  3. S. Fantini, M. A. Franceschini, S. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode-based technique,” Appl. Opt. 33, 5204–5213 (1994). [CrossRef] [PubMed]
  4. B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994). [CrossRef] [PubMed]
  5. H. Liu, A. Hielscher, B. Chance, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995). [CrossRef] [PubMed]
  6. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Chaps. 7 and 9.
  7. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992). [CrossRef] [PubMed]
  8. A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue,” Phys. Med. Biol. 40, 1957–1975 (1995). [CrossRef] [PubMed]
  9. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996). [CrossRef] [PubMed]
  10. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  11. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  12. J. D. Moulton, “Diffusion modelling of picosecond laser pulse propagation of turbid media,” master’s degree dissertation (McMaster University, Hamilton, Ontario, Canada, 1990).
  13. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissue using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989). [CrossRef] [PubMed]
  14. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995). [CrossRef] [PubMed]
  15. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995). [CrossRef]
  16. T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially-resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  17. M. Keijzer, W. M. Star, and P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988). [CrossRef] [PubMed]
  18. G. H. Bryan, “An application of the method of images to the conduction of heat,” Proc. London Math. Soc. 22, 424–430 (1891).
  19. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983). [CrossRef] [PubMed]
  20. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
  21. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  22. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstr, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993). [CrossRef] [PubMed]
  23. A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996). [CrossRef] [PubMed]
  24. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1983), Chap. 11.
  25. F. Liu, K. M. Yoo, and R. R. Alfano, “Should the photon flux of the photon density be used to describe the temporal profiles of scattered ultrashort laser pulses in random media?” Opt. Lett. 18, 432–434 (1993). [CrossRef] [PubMed]
  26. T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited