OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 14, Iss. 5 — May. 1, 1997
  • pp: 1137–1143

Effective-medium approach for counterpropagating waves in nonuniform Bragg gratings

Awdah Arraf, L. Poladian, C. Martijn de Sterke, and T. G. Brown  »View Author Affiliations


JOSA A, Vol. 14, Issue 5, pp. 1137-1143 (1997)
http://dx.doi.org/10.1364/JOSAA.14.001137


View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider an effective-medium description of Bragg gratings. Though this method can be used to obtain exact results that agree with coupled-mode theory for counterpropagating modes, we show that it is particularly useful for obtaining simple approximate results, for example for uniform gratings and for gratings with point defects.

© 1997 Optical Society of America

History
Original Manuscript: May 6, 1996
Revised Manuscript: October 8, 1996
Manuscript Accepted: November 11, 1996
Published: May 1, 1997

Citation
Awdah Arraf, L. Poladian, C. Martijn de Sterke, and T. G. Brown, "Effective-medium approach for counterpropagating waves in nonuniform Bragg gratings," J. Opt. Soc. Am. A 14, 1137-1143 (1997)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-14-5-1137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Ragdale, D. Reid, I. Bennion, “Fibre grating devices,” in Fiber Laser Sources and Amplifiers, M. J. Digonnet, ed., Proc. SPIE1171, 148–156 (1990). [CrossRef]
  2. R. J. Campbell, R. Kashyap, “The properties and applications of photosensitive germanosilicate fiber,” Int. J. Opt. 9, 33–57 (1994).
  3. K. Hill, “A periodic distributed-parameter waveguide for integrated optics,” Appl. Opt. 13, 1853–1856 (1974). [CrossRef] [PubMed]
  4. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef] [PubMed]
  5. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976). [CrossRef]
  6. J. E. Sipe, L. Poladian, C. Martijn de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994). [CrossRef]
  7. L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993). [CrossRef]
  8. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Sec. 8.
  9. W. H. Loh, R. I. Laming, “1.55 µm phase-shifted distributed feedback fiber laser,” Electron. Lett. 31, 1440–1441 (1995). [CrossRef]
  10. J. E. A. Whiteaway, A. P. Wright, B. Garret, G. H. B. Thompson, J. E. Carroll, L. M. Zhang, C. F. Tsang, I. H. White, K. A. Williams, “Detailed large-signal dynamic modelling of DFB laser structures and comparison with experiment,” Opt. Quantum Electron. 26, 817–842 (1994). [CrossRef]
  11. K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, “λ/4-shifted InGaAsP/InP DFN lasers by simultaneous holographic exposure of positive and negative photoresists,” Electron. Lett. 20, 1008–1010 (1984). [CrossRef]
  12. See, e.g., C. M. de Sterke, “Simulations of gap soliton generation,” Phys. Rev. A 45, 2012–2018 (1992). [CrossRef] [PubMed]
  13. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), Chap. 1, p. 38.
  14. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, Birmingham, 1984), Chap. 3, p. 67.
  15. Ref. 13, Chap. 7, p. 323.
  16. See, e.g., P. Sheng, Scattering and Localization of Classical Waves in Random Media (World Scientific, Singapore, 1990).
  17. See, e.g., J. M. Ziman, Models of Disorder (Cambridge U. Press, Cambridge, 1979), Chap. 9, p. 332.
  18. P. St. J. Russell, “Bragg resonance of light in optical superlattices,” Phys. Rev. Lett. 56, 596–599 (1986). [CrossRef] [PubMed]
  19. V. Jayaraman, D. A. Cohen, L. A. Coldren, “Demonstration of broadband tunability in a semiconductor laser using sampled gratings,” Appl. Phys. Lett. 60, 2321–2323 (1992). [CrossRef]
  20. C. M. de Sterke, N. G. R. Broderick, “Coupled mode equations for superstructure Bragg gratings,” Opt. Lett. 20, 2039–2041 (1995). [CrossRef] [PubMed]
  21. J. Canning, M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibers,” Electron. Lett. 30, 1344–1345 (1994). [CrossRef]
  22. See, e.g., W. A. Harrison, Solid State Theory (Dover, New York, 1979), p. 176.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited