OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 14, Iss. 6 — Jun. 1, 1997
  • pp: 1231–1242

Model of optical coherence tomography of heterogeneous tissue

J. M. Schmitt and A. Knüttel  »View Author Affiliations

JOSA A, Vol. 14, Issue 6, pp. 1231-1242 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (1015 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A comprehensive model of optical coherence tomography (OCT) is described that includes the interference effects that produce speckle in images of dense heterogeneous tissue. It is based on the extended Huygens–Fresnel formulation of beam propagation in a turbulent atmosphere, adapted to the analysis of OCT. Incorporated in the model is a fractal description of the size distribution of scatterers in tissue. We demonstrate its application in the simulation of images of tissue volumes containing high-contrast targets embedded in a mixture of two sizes of particles. The simulated images show the degradation of image quality caused by speckle noise, along with the benefits of employing a light source with a short coherence time and an objective lens with a high numerical aperture. Based on model results, an estimate of the maximum probing depth is given in terms of the design variables of an OCT scanner and the optical properties of the tissue.

© 1997 Optical Society of America

Original Manuscript: September 4, 1996
Revised Manuscript: December 5, 1996
Manuscript Accepted: December 5, 1996
Published: June 1, 1997

J. M. Schmitt and A. Knüttel, "Model of optical coherence tomography of heterogeneous tissue," J. Opt. Soc. Am. A 14, 1231-1242 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, K. Mengedoht, W. Werner, “Eye length measurement by interferometry with partially coherent light,” Opt. Lett. 13, 186–188 (1988). [CrossRef] [PubMed]
  3. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Imaging of macular disease with optical coherence tomography,” Opthalmology 120, 217–229 (1995).
  4. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995). [CrossRef] [PubMed]
  5. J. M. Schmitt, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
  6. J. M. Schmitt, A. Knüttel, M. Yadlowsky, M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994). [CrossRef] [PubMed]
  7. J. M. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993). [CrossRef] [PubMed]
  8. M. J. Yadlowsky, J. M. Schmitt, R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995). [CrossRef] [PubMed]
  9. Y. T. Pan, R. Birngruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995). [CrossRef] [PubMed]
  10. J. M. Schmitt, A. Knüttel, A. S. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993). [CrossRef]
  11. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  12. A. Knüttel, R. Schork, D. Böcker, “Analytical modeling of spatial resolution curves in turbid media acquired with optical coherence tomography (OCT),” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, T. Wilson, eds., Proc. SPIE2655, 258–270 (1996). [CrossRef]
  13. H. T. Yura, “Mutual coherence function of a finite cross section beam propagating in a turbulent medium,” Appl. Opt., 11, 1399–1406 (1972). [CrossRef] [PubMed]
  14. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  15. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971). [CrossRef] [PubMed]
  16. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 2, pp. 448–454.
  17. J. M. Schmitt, G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996). [CrossRef] [PubMed]
  18. G. Kumar, J. M. Schmitt, “Micro-optical properties of tissue,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases III: Optical Biopsy, R. R. Alfano, ed., Proc. SPIE2679, 106–116 (1996). [CrossRef]
  19. R. F. Lutomirski, “Atmospheric degradation of electrooptic system performance,” Appl. Opt. 17, 3915–3921 (1978). [CrossRef] [PubMed]
  20. Ref. 16, p. 318.
  21. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1977).
  22. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 121.
  23. A. Ishimaru, “Limitation on image resolution imposed by a random medium,” Appl. Opt. 17, 348–352 (1978). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited