OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 14, Iss. 8 — Aug. 1, 1997
  • pp: 1684–1695

Anatomically accurate, finite model eye for optical modeling

Hwey-Lan Liou and Noel A. Brennan  »View Author Affiliations


JOSA A, Vol. 14, Issue 8, pp. 1684-1695 (1997)
http://dx.doi.org/10.1364/JOSAA.14.001684


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.

© 1997 Optical Society of America

History
Original Manuscript: July 19, 1996
Revised Manuscript: January 9, 1997
Manuscript Accepted: January 9, 1997
Published: August 1, 1997

Citation
Hwey-Lan Liou and Noel A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-14-8-1684


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974). [CrossRef]
  2. H. L. Liou, N. A. Brennan, “The prediction of spherical aberration with schematic eyes,” Ophthalmic. Physiol. Opt. 16, 348–354 (1996). [CrossRef] [PubMed]
  3. R. Navarro, J. Santamarı́a, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985). [CrossRef] [PubMed]
  4. G. Smith, B. K. Pierscionek, D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic. Physiol. Opt. 11, 359–369 (1991). [CrossRef] [PubMed]
  5. M. Ye, X. X. Zhang, L. N. Thibos, A. Bradley, “A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. (Suppl.) 34, 777 (1993).
  6. L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992). [CrossRef] [PubMed]
  7. L. N. Thibos, M. Ye, X. X. Zhang, A. Bradley, “A new optical model of the human eye,” Opt. Photon. News 4, 12 (1993). [CrossRef]
  8. A. Bradley, School of Optometry, Indiana University, Bloomington, Ind. 47405-3201 (personal communication, 1995): corrections to the Ye et al. abstract (Ref. 5): The refracting surface defined as Y=0.0899X2+0.0006X4 should be Y=0.0899X2+0.0005X4 instead.
  9. S. Stenström, “Investigation of the variation and the correlation of the optical elements of human eyes,” Am. J. Optom. 25, 340–350 (1948).
  10. F. Jansson, “Measurements of intraocular distances by ultrasound,” Acta Ophthalmol. Suppl. 74, 1–49 (1963). [PubMed]
  11. C. S. Yu, D. Kao, C. T. Chang, “Measurement of the length of the visual axis by ultrasonography in 1789 eyes,” Chin. J. Ophthalmol. 15, 45–47 (1979).
  12. J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989). [CrossRef]
  13. D. A. Leighton, A. Tomlinson, “Changes in axial length and other dimensions of the eyeball with increasing age,” Acta Ophthalmol. 50, 815–826 (1972). [CrossRef]
  14. S. T. Fontana, R. F. Brubaker, “Volume and depth of the anterior chamber in the normal aging human eye,” Arch. Ophthalmol. 98, 1803–1808 (1980). [CrossRef] [PubMed]
  15. J. Larsen, “The sagittal growth of the eye,” Acta Ophthalmol. 49, 239–262 (1971). [CrossRef]
  16. R. Weekers, J. Grieten, “Mesure de la profondeur de la chambre antérieure en clinique,” Soc. Belg. Ophthalmol. 129, 361–381 (1961).
  17. V. Clemmensen, M. H. Luntz, “Lens thickness and angle-closure glaucoma,” Acta Ophthalmol. 54, 193–197 (1976). [CrossRef]
  18. R. F. Lowe, “Central corneal thickness,” Br. J. Ophthalmol. 53, 824–826 (1969). [CrossRef] [PubMed]
  19. F. K. Hansen, “A clinical study of the normal human central corneal thickness,” Acta Ophthalmol. 49, 82–89 (1971).
  20. E. L. Martola, J. L. Baum, “Central and peripheral corneal thickness,” Arch. Opththalmol. 79, 28–30 (1968). [CrossRef]
  21. P. S. Soni, I. M. Borish, “A report on central and peripheral corneal thickness,” Int. Contact Lens Clin. 6, 66–70 (1979).
  22. D. M. Maurice, A. A. Giardini, “A simple optical apparatus for measuring the corneal thickness and the average thickness of the human cornea,” Br. J. Ophthalmol. 35, 169–177 (1951). [CrossRef] [PubMed]
  23. A. Tomlinson, “A clinical study of the central and peripheral thickness and curvature of the human cornea,” Acta Ophthalmol. 50, 73–82 (1972). [CrossRef]
  24. N. K. Hirji, J. R. Larke, “Thickness of human cornea measured by topographic tachometry,” Am. J. Optom. Arch. Am. Acad. Optom. 55, 97–100 (1978).
  25. A. Sorsby, M. Sheridan, A. G. Leary, B. Benjamin, “Vision, visual acuity and ocular refraction in young men,” Brit. Med. J. 1, 1394–1398 (1960).
  26. A. Sorsby, B. Benjamin, J. B. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations. A Study in the Correlation of the Optical Components of the Eye.  (Her Majesty’s Stationary Office, London, 1957).
  27. M. Townsley, “New knowledge of the corneal contour,” Contacto 14, 38–43 (1970).
  28. R. B. Mandell, R. St. Helen, “Mathematical model for the corneal contour,” Br. J. Physiol. Opt. 26, 183–197 (1971).
  29. P. H. Kiely, G. Smith, G. Carney, “The mean shape of the human cornea,” Opt. Acta 29, 1027–1040 (1982). [CrossRef]
  30. B. A. J. Clark, “Variations in corneal topography,” Aust. J. Optom. 56, 399–413 (1973).
  31. M. Guillon, P. M. Lydon, C. Wilson, “Corneal topography: a clinical model,” Ophthalmic. Physiol. Opt. 6, 47–56 (1986). [CrossRef]
  32. R. F. Lowe, B. A. Clark, “Posterior corneal curvature,” Br. J. Ophthalmol. 57, 464–470 (1973). [CrossRef] [PubMed]
  33. J. M. Royston, M. C. M. Dunne, D. A. Barnes, “Measurement of the posterior corneal radius using slit lamp and Purkinje image techniques,” Ophthalmic. Physiol. Opt. 10, 385–388 (1990). [CrossRef] [PubMed]
  34. M. C. M. Dunne, J. M. Royston, D. A. Barnes, “Normal variations of the posterior corneal surface,” Acta Ophthalmol. 70, 255–261 (1992). [CrossRef]
  35. A. G. Rivett, A. Ho, “The posterior corneal topography,” Invest. Ophthalmol. Visual Sci. (Suppl.) 32, 1001–1001 (1991).
  36. S. Patel, J. Marshall, F. W. Fitzke, “Shape and radius of posterior corneal surface,” Refract. Corneal Surg. 9, 173–181 (1993). [PubMed]
  37. R. F. Lowe, “Anterior lens curvature,” Br. J. Ophthalmol. 56, 409–413 (1972). [CrossRef] [PubMed]
  38. R. F. Lowe, B. A. J. Clark, “Radius of curvature of the anterior lens surface,” Br. J. Ophthalmol. 57, 471–474 (1973). [CrossRef] [PubMed]
  39. N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974). [CrossRef] [PubMed]
  40. M. J. Howcroft, J. A. Parker, “Aspheric curvatures for the human lens,” Vision Res. 17, 1217–1223 (1977). [CrossRef] [PubMed]
  41. C. Roberts, “The accuracy of ‘power’ maps to display curvature data in corneal topography systems,” Invest. Ophthalmol. Visual Sci. 35, 3525–3532 (1994).
  42. S. Nakao, T. Ono, R. Nagata, K. Iwata, “The distribution of refractive index in the human crystalline lens,” Jpn. J. Clin. Ophthalmol. 23, 903–906 (1969).
  43. M. C. W. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24, 409–415 (1984). [CrossRef] [PubMed]
  44. B. K. Pierscionek, D. Y. C. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci. 66, 822–829 (1989). [CrossRef] [PubMed]
  45. A. Gullstrand, Helmholtz’s Physiological Optics (Optical Society of America, New York, 1924), Appendix, pp. 350–358.
  46. Y. Le Grand, Physiological Optics (Springer-Verlag, New York, 1980), pp. 54–55.
  47. D. A. Palmer, J. Sivak, “Crystalline lens dispersion,” J. Opt. Soc. Am. 71, 780–782 (1981). [CrossRef] [PubMed]
  48. J. G. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982). [CrossRef] [PubMed]
  49. G. Westheimer, “Image quality in the human eye,” Opt. Acta 17, 641–658 (1970). [CrossRef]
  50. M. A. Wilson, M. C. W. Campbell, P. Simonet, “Change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci. 69, 129–136 (1992). [CrossRef] [PubMed]
  51. G. Walsh, “The effect of mydriasis on the pupillary centration of the human eye,” Ophthalmic. Physiol. Opt. 8, 178–182 (1988). [CrossRef] [PubMed]
  52. G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988). [CrossRef] [PubMed]
  53. A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics, 2nd ed. (Butterworth-Heinemann, Oxford, 1989), pp. 17–18.
  54. W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1529 (1971). [CrossRef]
  55. A. C. Kooijman, “Light distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. 73, 1544–1550 (1983). [CrossRef] [PubMed]
  56. J. W. Blaker, “Toward an adaptive model of the human eye,” J. Opt. Soc. Am. 70, 220–223 (1980). [CrossRef] [PubMed]
  57. G. Wald, D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947). [CrossRef] [PubMed]
  58. R. E. Bedford, G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957). [CrossRef] [PubMed]
  59. P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986). [CrossRef] [PubMed]
  60. D. P. Cooper, P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65, 99–107 (1988). [CrossRef] [PubMed]
  61. R. A. Applegate, V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993). [CrossRef] [PubMed]
  62. P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993). [CrossRef] [PubMed]
  63. R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993). [CrossRef] [PubMed]
  64. L. N. Thibos, A. Bradley, X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Visual Sci. 68, 599–607 (1991). [CrossRef]
  65. M. Rynders, B. Lidkea, W. Chisholm, L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995). [CrossRef]
  66. S. G. El Hage, F. Berny, “Contribution of the crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973). [CrossRef] [PubMed]
  67. H. Hartridge, Recent Advances in the Physiology of Vision (Churchill, London, 1950), pp. 78–84.
  68. T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
  69. M. Millodot, J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979). [CrossRef] [PubMed]
  70. J. A. Parker, “Aspheric optics of the human lens,” Can. J. Ophthalmol. 7, 168–175 (1972). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited