OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 14, Iss. 9 — Sep. 1, 1997
  • pp: 2253–2262

Intensity of diffuse radiation in particulate media

William E. Vargas and Gunnar A. Niklasson  »View Author Affiliations


JOSA A, Vol. 14, Issue 9, pp. 2253-2262 (1997)
http://dx.doi.org/10.1364/JOSAA.14.002253


View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for calculating the angular and optical depth dependencies of diffuse radiation in light scattering and absorbing particulate media is established. From the Lorenz–Mie theory, the coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials are obtained. Then the angular dependence of diffuse radiation is described by means of generalized phase functions, corresponding to the different scattering orders. The optical depth dependence is given in terms of weighting factors, which depend on average path-length parameters and forward-scattering ratios of the different scattering orders. Intensity patterns are obtained for different particle sizes, concentrations, and relative refractive indices, and the behavior of the forward and backward diffuse intensities in terms of optical depth is displayed. Comparisons with the forward-multiple-scattering theory of Hartel are carried out. A generalization of the Beer–Lambert law in the case of light-scattering materials is obtained from the present approach, which is derived from the radiative transfer equation.

© 1997 Optical Society of America

History
Original Manuscript: November 14, 1996
Revised Manuscript: March 18, 1997
Manuscript Accepted: March 18, 1997
Published: September 1, 1997

Citation
William E. Vargas and Gunnar A. Niklasson, "Intensity of diffuse radiation in particulate media," J. Opt. Soc. Am. A 14, 2253-2262 (1997)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-14-9-2253


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Schuster, “Radiation through a foggy atmosphere,” Astrophys. J. 21, 1–22 (1905). [CrossRef]
  2. J. W. Ryde, “The scattering of light by turbid media. Part I,” Proc. R. Soc. London, Ser. A 131, 451–464 (1931). [CrossRef]
  3. P. Kubelka, F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. (Leipzig) 12, 593–601 (1931).
  4. W. Hartel, “Zur Theorie der Lichtstreuung durch trübe Schichten besonders Trübgläser,” Licht 10, 141–143, 165, 190, 191, 214, 215, 232–234 (1940).
  5. H. H. Theissing, “Macrodistribution of light scattered by dispersion of spherical dielectric particles,” J. Opt. Soc. Am. 40, 232–243 (1950). [CrossRef]
  6. H. G. Hecht, “The a priori calculation of the diffuse reflectance of a turbid medium,” Opt. Acta 30, 659–668 (1983). [CrossRef]
  7. H. C. Van de Hulst, Multiple Light Scattering (Academic, New York, 1980).
  8. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  9. F. B. Yurevich, L. A. Konyukh, “Radiation attenuation by disperse media,” Int. J. Heat Mass Transfer 18, 819–829 (1975). [CrossRef]
  10. W. M. Irvine, “Multiple scattering by large particles,” Astrophys. J. 142, 1563–1575 (1965). [CrossRef]
  11. Y. Kuga, A. Ishimaru, H. W. Chang, L. Tsang, “Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory,” Appl. Opt. 25, 3803–3806 (1986). [CrossRef] [PubMed]
  12. A. Zardecki, S. A. W. Gerstl, “Multi-Gaussian phase function model for off-axis laser beam scattering,” Appl. Opt. 26, 3000–3004 (1987). [CrossRef] [PubMed]
  13. S. A. W. Gerstl, A. Zardecki, W. P. Unruh, D. M. Stupin, G. H. Stokes, N. E. Elliot“On-axis multiple scattering theory of a laser beam in turbid media: comparison of theory and experiment,” Appl. Opt. 26, 779–785 (1987). [CrossRef]
  14. M. H. Eddowes, T. N. Mills, D. T. Delpy, “Monte Carlo simulations of coherent backscatter for identification of the optical coefficients of biological tissues in vivo,” Appl. Opt. 34, 2261–2267 (1995). [CrossRef] [PubMed]
  15. L. Bergougnoux, J. Misguich-Ripault, J. L. Firpo, J. André, “Monte Carlo calculation of backscattered light intensity by suspension: comparison with experimental data,” Appl. Opt. 35, 1735–1741 (1996). [CrossRef] [PubMed]
  16. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  17. C. M. Chu, S. W. Churchill, “Representation of the angular distribution of radiation scattered by a spherical particle,” J. Opt. Soc. Am. 45, 958–962 (1955). [CrossRef]
  18. W. E. Vargas, G. A. Niklasson, “Forward average path-length parameter in four-flux radiative transfer models,” Appl. Opt. 36, 3735–3738 (1997). [CrossRef] [PubMed]
  19. D. H. Woodward, “Multiple light scattering by spherical dielectric particles,” J. Opt. Soc. Am. 54, 1325–1331 (1964). [CrossRef]
  20. C. Smart, R. Jacobsen, M. Kerker, J. P. Kratohvil, E. Matijevic, “Experimental study of multiple light scattering,” J. Opt. Soc. Am. 55, 947–955 (1965). [CrossRef]
  21. H. C. Hottel, A. F. Sarofim, I. A. Vasalos, W. H. Dalzell, “Multiple scatter: comparison of theory with experiment,” J. Heat Transfer 92, 285–291 (1970). [CrossRef]
  22. P. Latimer, “Light scattering and absorption as methods of studying cell population parameters,” Ann. Rev. Biophys. Bioeng. 11, 129–150 (1982). [CrossRef]
  23. P. Latimer, “Blood platelet aggregometer: predicted effects of aggregation, photometer geometry, and multiple scattering,” Appl. Opt. 22, 1136–1143 (1983). [CrossRef] [PubMed]
  24. H. Schnablegger, O. Glatter, “Sizing of colloidal particles with light scattering: corrections for beginning multiple scattering,” Appl. Opt. 34, 3489–3501 (1995). [CrossRef] [PubMed]
  25. H. Schnablegger, D. Lehner, O. Glatter, “Static light scattering on dense colloidal systems: computational techniques, new instrumentation and experimental results,” in Electromagnetic and Light Scattering: Theory and Applications, T. Wriedt, M. Quinten, K. Bauckhage, eds. (Universität Bremen, Bremen, Germany, 1996), pp. 133–137.
  26. S. E. Orchard, “Multiple scattering by spherical dielectric particles,” J. Opt. Soc. Am. 55, 737 (1965). [CrossRef]
  27. P. Chylek, “Mie scattering into the backward hemisphere,” J. Opt. Soc. Am. 63, 1467–1471 (1973). [CrossRef]
  28. S. E. Orchard, “Reflection and transmission of light by diffusing suspensions,” J. Opt. Soc. Am. 59, 1584–1597 (1969). [CrossRef]
  29. J. Reichman, “Determination of absorption and scattering coefficients for nonhomogeneous media: 1: theory,” Appl. Opt. 12, 1811–1815 (1973). [CrossRef] [PubMed]
  30. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  31. C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw–Hill, New York, 1978).
  32. J. J. Duderstadt, W. R. Martin, Transport Theory (Wiley, New York, 1979).
  33. A. Ben-David, “Multiple-scattering transmission and an effective average photon path length of a plane-parallel beam in a homogeneous medium,” Appl. Opt. 34, 2802–2810 (1995). [CrossRef] [PubMed]
  34. N. A. Voishvillo, “Dependence of the transmission coefficients of a scattering layer on its thickness,” Opt. Spektrosk. 66, 390–393 (1989).
  35. L. R. Bissonnette, R. B. Smith, A. Ulitsky, J. D. Houston, A. I. Carswell, “Transmitted beam profiles, integrated backscatter, and range-resolved backscatter in inhomogeneous laboratory water droplet clouds,” Appl. Opt. 27, 2485–2494 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited