OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 109–119

Polarization effects in the optical interaction between a nanoparticle and a corrugated surface: implications for apertureless near-field microscopy

A. Madrazo, R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet  »View Author Affiliations


JOSA A, Vol. 15, Issue 1, pp. 109-119 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000109


View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We put forward rigorous two-dimensional numerical calculations of the electromagnetic interaction between a nanometric tip and a corrugated dielectric interface when the tip scans the surface at nanometric distance. The surface is illuminated from its dielectric side by a p-polarized wave at normal incidence or under total internal reflection. Large tip–substrate optical interactions appear for small distances between these two bodies. The far-field images produced by recording the intensity scattered by either the tip or the sample are analyzed in terms of several experimental parameters, namely, the angles of incidence and observation, the dielectric permittivities of the tip and the surface, and the tip–sample distance. The influence of the component of the electric field normal to the surface is discussed. The role of periodic modulation of the vertical position of the tip is also investigated.

© 1998 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(260.5430) Physical optics : Polarization

History
Original Manuscript: May 5, 1997
Revised Manuscript: July 21, 1997
Manuscript Accepted: July 25, 1997
Published: January 1, 1998

Citation
A. Madrazo, R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, "Polarization effects in the optical interaction between a nanoparticle and a corrugated surface: implications for apertureless near-field microscopy," J. Opt. Soc. Am. A 15, 109-119 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-1-109


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Pohl, “Scanning near-field optical microscopy,” in Advances in Optical and Electron Microscopy, J. R. Sheppard, T. Mulvey, eds. (Academic, New York, 1991), pp. 243–311.
  2. D. W. Pohl, D. Courjon, eds., Near-Field Optics, Vol. 242 of NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1993).
  3. M. Nieto-Vesperinas, N. Garcı́a, eds., Optics at the Nanometer Scale, Vol. 319 of NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1996).
  4. M. Specht, J. D. Pedarning, W. M. Heckl, T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992). [CrossRef] [PubMed]
  5. N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993). [CrossRef]
  6. F. Zenhausern, M. P. O’Boyle, K. H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994). [CrossRef]
  7. Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994). [CrossRef] [PubMed]
  8. S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser traped probe,” Jpn. J. Appl. Phys. 33, 1725–1727 (1994). [CrossRef]
  9. R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995). [CrossRef] [PubMed]
  10. F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy,” Science 269, 1083–1085 (1995). [CrossRef] [PubMed]
  11. Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996). [CrossRef]
  12. A. Lahrech, R. Bachelot, P. Gleyzes, A. C. Boccara, “Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600,” Opt. Lett. 21, 1315–1317 (1996). [CrossRef] [PubMed]
  13. Y. Inouye, S. Kawata, “Reflection-mode near-field optical microscope with a metallic probe tip for observing fine structures in semiconductor materials,” Opt. Commun. 134, 31–35 (1997). [CrossRef]
  14. J. M. Vigoureux, C. Girard, D. Courjon, “General principles of scanning tunneling optical microscopy,” Opt. Lett. 14, 1039–1041 (1989). [CrossRef] [PubMed]
  15. D. Van Labeke, D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992). [CrossRef]
  16. W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991). [CrossRef]
  17. D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993). [CrossRef]
  18. D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning tunneling optical microscopy theory,” J. Mod. Opt. 40, 1239–1254 (1993). [CrossRef]
  19. M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996). [CrossRef]
  20. A. Madrazo, M. Nieto-Vesperinas, “Imaging properties of a nanocylinder close to a surface,” J. Opt. Soc. Am. A 14, 2768–2776 (1997). [CrossRef]
  21. C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14,467–14,473 (1994). [CrossRef]
  22. C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study in real space,” Phys. Rev. B 49, 11,344–11,351 (1994). [CrossRef]
  23. O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995). [CrossRef] [PubMed]
  24. C. Girard, O. J. F. Martin, A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098–3101 (1995). [CrossRef] [PubMed]
  25. C. Girard, A. Dereux, “Near field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996). [CrossRef]
  26. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991), Chap. 2, p. 52.
  27. A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetics waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995). [CrossRef]
  28. A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996); “Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope. Influence of the tip on the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997). [CrossRef]
  29. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994); A. Madrazo, M. Nieto-Vesperinas, “Detection of subwavelength Goos–Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995); A. Madrazo, N. Garcia, M. Nieto-Vesperinas, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996). [CrossRef]
  30. E. Wolf, in Coherence and Quantum Optics, L. Mandel, E. Wolf, eds. (Plenum, New York, 1973), pp. 339–357.
  31. S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,” J. Chem. Phys. 70, 1602–1613 (1979). [CrossRef]
  32. F. Pincemin, A. Sentenac, J. J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994). [CrossRef]
  33. O. Keller, S. Bozhevolnyi, M. Xiao, “On the resolution limit of near-field optical microscopy,” Ref. 2, pp. 229–237.
  34. E. Betzig, “Principles and applications of near-field scanning optical microscopy (NSOM),” Ref. 2, p. 7.
  35. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997). [CrossRef]
  36. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J. J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997). [CrossRef]
  37. J. J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995). [CrossRef]
  38. R. Carminati, J. J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995). [CrossRef]
  39. J. C. Weeber, F. de Fornel, J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996). [CrossRef]
  40. L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited