OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 120–143

Real-time simulation of interferometric gravitational wave detectors involving moving mirrors

Biplab Bhawal  »View Author Affiliations


JOSA A, Vol. 15, Issue 1, pp. 120-143 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000120


View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method of real-time dynamical simulation for laser interferometric gravitational wave detectors is presented. The method is based on a digital filtering approach and a number of important physical points understood by a step-by-step investigation of two-mirror cavities, a three-mirror coupled cavity, and a full-length power-recycled interferometer with mirrors having longitudinal motion. The final analytical representation used for the fast simulation of a full-length power-recycled interferometer is analogous to a two-mirror dynamical cavity with time-dependent reflectivities, when intracavity fields of the interferometer are expressed together in a state-vector representation. A detailed discussion establishes the relationships among physical effects pertaining to field evolution in two-mirror cavities and coupled cavities or to the full interferometer.

© 1998 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry

History
Original Manuscript: January 31, 1997
Revised Manuscript: July 3, 1997
Manuscript Accepted: June 20, 1997
Published: January 1, 1998

Citation
Biplab Bhawal, "Real-time simulation of interferometric gravitational wave detectors involving moving mirrors," J. Opt. Soc. Am. A 15, 120-143 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-1-120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Papers in Proceedings of the International Conference on Gravitational Waves: Sources and Detectors, I. Ciufolini, F. Fidecaro, eds. (World Scientific, Singapore, 1997).
  2. R. W. P. Drever, “Interferometer detectors for gravitational radiation,” in Gravitational Radiation, N. Deruelle, T. Piran, eds. (North-Holland, Amsterdam, 1983).
  3. J. Camp, L. Sievers, R. Bork, J. Heefner, “Guided lock acquisition in a suspended Fabry–Perot cavity,” Opt. Lett. 20, 2463–2465 (1995). [CrossRef]
  4. VIRGO collaboration, VIRGO: Final Design (Istituto Nazionale di Fisica Nucleare, Pisa, Italy, 1995).
  5. B. Bhawal, “Global Control Document: dynamical simulation of cavity using a digital filtering approach,” (Laboratoire de l’Accélérateur Linéaire, Orsay, France, 1996).
  6. S. Song, “Recycling and squeezing in high-precision optical measurements,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1994).
  7. A. Bateman, W. Yates, Digital Signal Processing Design (Pitman, London, 1988); L. B. Jackson, Digital Filters and Signal Processing (Kluwer Academic, Boston, 1996).
  8. F. Cavalier, P. Hello, J.-Y. Vinet, “Global Control Document: dynamical simulation of cavities,” (Laboratoire de l’Accélérateur Linéaire, Orsay, France, 1995).
  9. B. Bhawal, “Global Control Document: dynamical simulation of 3-mirror coupled cavity using a digital filtering approach,” (Laboratoire de l’Accélérateur Linéaire, Orsay, France, 1996).
  10. A. E. Seigmann, Lasers (University Science, Mill Valley, Calif., 1986), pp. 524–530.
  11. P. Fritschel, D. Shoemaker, R. Weiss, “Demonstration of light recycling in a Michelson interferometer with Fabry–Perot cavities,” Appl. Opt. 31, 1412–1418 (1992). [CrossRef] [PubMed]
  12. J. Mizuno, “Comparison of optical configurations for laser-interferometric gravitational-wave detectors,” Ph.D. dissertation (Max-Planck Institut für Quantenoptik, Garching, Germany, 1995), Chap. 4.
  13. P. K. Fritschel, “Techniques for laser interferometric gravitational wave detectors,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1992), Secs. 5.2, 5.3.
  14. M. W. Regehr, “Signal extraction and control for an interferometric gravitational wave detector,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1995), Sec. 5.4.
  15. D. Redding, “Mathematical description of the LIGO single-mode acquisition code,” (LIGO project, California Institute of Technology, Pasadena, Calif., 1996).
  16. F. Marion, in “Minutes of the electronics and software meeting at Annecy, France,” B. Mours, ed., (Laboratoire d’Annecy de Physique des Particules, Annecy, France, 1996).
  17. B. Bhawal, “Global Control Document: freezing-the-finesse—a technique used for fast simulation of 3-mirror coupled cavity,” (Laboratoire de l’Accélérator Linéaire, Orsay, France, 1996).
  18. B. Bhawal, “What happens when all mirrors move in a 3-mirror coupled cavity,” (Laboratoire de l’Accélérator Linéaire, Orsay, France, 1996).
  19. R. Weiss, “Electromagnetically coupled broadband gravitational antenna,” Q. Prog. Rep. Res. Lab. Electron. MIT 105, 54–76 (1972); C. N. Man, D. Shoemaker, M. Pham Tu, D. Dewey, “External modulation technique for sensitive interferometric detection of displacements,” Phys. Lett. A 148, 8–16 (1990); M. W. Regehr, F. J. Raab, S. E. Whitcomb, “Demonstration of power-recycled Michelson interferometer with Fabry–Perot arms by frontal modulation,” Opt. Lett. 20, 1507–1509 (1995); R. Flaminio, H. Heitmann, “Longitudinal control of an interferometer for the detection of gravitational waves,” Phys. Lett. A 214, 112–122 (1996). [CrossRef] [PubMed]
  20. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  21. B. Bhawal, in “Minutes of the control workshop,” at Rome, Italy, B. Caron, ed., (Laboratoire d’Annecy de Physique des Particules, Annecy, France, 1996).
  22. B. Bhawal, “Evolution of intracavity fields at a nonsteady state in a dual-recycled interferometer,” Appl. Opt. 35, 1041–1045 (1996). [CrossRef] [PubMed]
  23. B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988). [CrossRef]
  24. K.-X. Sun, M. M. Fejer, E. Gustafson, R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited