## Electromagnetic analysis of diffraction gratings by the finite-difference time-domain method

JOSA A, Vol. 15, Issue 1, pp. 152-157 (1998)

http://dx.doi.org/10.1364/JOSAA.15.000152

Enhanced HTML Acrobat PDF (316 KB)

### Abstract

Diffraction gratings with feature sizes comparable to the wavelength are analyzed with a finite-difference time-domain method, which is a unique approach to electromagnetic problems in the time domain. The diffraction efficiencies obtained are in good agreement with other commonly used numerical methods in the frequency domain. As a further application, diffraction problems with pulsed light are also investigated.

© 1998 Optical Society of America

**OCIS Codes**

(050.1950) Diffraction and gratings : Diffraction gratings

(050.1960) Diffraction and gratings : Diffraction theory

(050.1970) Diffraction and gratings : Diffractive optics

(260.2110) Physical optics : Electromagnetic optics

**History**

Original Manuscript: May 20, 1997

Revised Manuscript: July 29, 1997

Manuscript Accepted: August 4, 1997

Published: January 1, 1998

**Citation**

Hiroyuki Ichikawa, "Electromagnetic analysis of diffraction gratings by the finite-difference time-domain method," J. Opt. Soc. Am. A **15**, 152-157 (1998)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-1-152

Sort: Year | Journal | Reset

### References

- E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992). [CrossRef]
- J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), pp. 36–38.
- T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef]
- R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
- J. Turunen, F. Wyrowski, “Diffractive optics: from promise to fruition,” in Trends in Optics, A. Consortini, ed. (Academic, San Diego, Calif., 1996), Chap. 6, pp. 111–123.
- A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988). [CrossRef]
- A. Taflove, K. R. Umashankar, “Review of FD–TD numerical modeling of electromagnetic wave scattering and radar cross section,” Proc. IEEE 77, 682–699 (1989). [CrossRef]
- K. L. Shlager, J. B. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Trans. Antennas Propag. Mag. 37, 39–56 (1995).
- W.-J. Tsay, D. M. Pozar, “Application of the FDTD technique to periodic problems in scattering and radiation,” IEEE Microwave Guid. Wave Lett. 3, 250–252 (1993). [CrossRef]
- A. C. Cangellaris, M. Gribbons, G. Sohos, “A hybrid spectral/FDTD method for the electromagnetic analysis of guided waves in periodic structures,” IEEE Microwave Guid. Wave Lett. 3, 375–377 (1993). [CrossRef]
- D. T. Prescott, N. V. Shuley, “Extensions to the FDTD method for the analysis of infinitely periodic arrays,” IEEE Microwave Guid. Wave Lett. 4, 352–354 (1994). [CrossRef]
- J. B. Judkins, R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,” J. Opt. Soc. Am. A 12, 1974–1983 (1995). [CrossRef]
- K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
- G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981). [CrossRef]
- J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
- E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993). [CrossRef]
- A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975). [CrossRef]
- J. Turunen, “Form-birefringence limits of Fourier-expansion methods in grating theory,” J. Opt. Soc. Am. A 13, 1013–1018 (1996). [CrossRef]
- L. Li, “Use of Fourier series in analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
- P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, “Computational modeling of femtosecond optical solitons from Maxwell’s equations,” IEEE J. Quantum Electron. 28, 2416–2422 (1992). [CrossRef]
- Z. Wang, Z. Xu, Z. Zhnag, “Diffraction integral formulas of the pulsed wave field in the temporal domain,” Opt. Lett. 22, 354–356 (1997). [CrossRef] [PubMed]
- B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 921–924.
- W. T. Silfvast, “Lasers,” in Handbook of Optics, Vol. 1, M. Bass, ed. (McGraw-Hill, New York, 1995), Chap. 11, pp. 11.7–11.8.
- H. Kikuta, H. Yoshida, K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2, 92–99 (1995). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.