OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 202–206

Analytic relation for recovering the mutual intensity by means of intensity information

Jinhong Tu and Shinichi Tamura  »View Author Affiliations


JOSA A, Vol. 15, Issue 1, pp. 202-206 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000202


View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analytic relation for recovering the mutual intensity by means of intensity information under the condition of the fractional Fourier transform is derived. The results may simplify the reconstruction of the mutual intensity in comparison with the Wigner tomographic method and can be regarded as an inverse transform formula that expresses output intensity in terms of input mutual intensity under partially coherent illumination.

© 1998 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(070.2590) Fourier optics and signal processing : ABCD transforms
(110.4980) Imaging systems : Partial coherence in imaging
(350.7420) Other areas of optics : Waves

Citation
Jinhong Tu and Shinichi Tamura, "Analytic relation for recovering the mutual intensity by means of intensity information," J. Opt. Soc. Am. A 15, 202-206 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-1-202


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. A. Nugent, “Wave field determination using three-dimensional intensity information,” Phys. Rev. Lett. 68, 2261–2264 (1992); G. Hazak, “Comment on ‘Wave field determination using three-dimensional intensity information’,” Phys. Rev. Lett. 69, 2874–2784 (1992). [CrossRef] [PubMed]
  2. F. Gori, M. Santarsiero, and G. Guattari, “Coherence and space distribution of intensity,” J. Opt. Soc. Am. A 10, 673–679 (1993); T. E. Gureyev, A. Roberts, and K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995). [CrossRef]
  3. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994). [CrossRef] [PubMed]
  4. D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995). [CrossRef] [PubMed]
  5. R. Gase, T. Gase, and K. Blüthner, “Complex wave-field reconstruction by means of the Page distribution function,” Opt. Lett. 20, 2045–2047 (1995). [CrossRef] [PubMed]
  6. G. Iaconis and I. A. Walmsley, “Direct measurement of the two-point field correlation function,” Opt. Lett. 21, 1783–1785 (1996). [CrossRef] [PubMed]
  7. U. Janicke and M. Wilkens, “Tomography of atom beams,” J. Mod. Opt. 42, 2183–2199 (1995). [CrossRef]
  8. T. Alieva and F. Agullo-Lopez, “Reconstruction of the optical correlation function in a quadratic refractive index medium,” Opt. Commun. 114, 161–169 (1995). [CrossRef]
  9. J. Tu and S. Tamura, “Wave field determination using tomography of ambiguity function,” Phys. Rev. E 55, 1946–1949 (1997). [CrossRef]
  10. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  11. H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
  12. Haldum M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
  13. M. Beck, M. G. Raymer, I. A. Walmsley, and V. Wang, “Chronocyclic tomography for measuring the amplitude and phase structure of optical pulses,” Opt. Lett. 18, 2041–2043 (1993). [CrossRef] [PubMed]
  14. K. H. Brenner and J. Ojeda-Castaneda, “Ambiguity function and Wigner distribution function applied to partially coherent imagery,” Opt. Acta. 31, 213–223 (1984). [CrossRef]
  15. H. Kuhn, D.-G. Welsch, and W. Vogel, “Determination of density matrices from field distributions and quasiprobabilities,” J. Mod. Opt. 41, 1607–1613 (1994). [CrossRef]
  16. D. T. Smithey, M. Beck, and M. G. Raymer, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993). [CrossRef] [PubMed]
  17. K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distribution for the quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989). [CrossRef] [PubMed]
  18. G. M. D’Ariano, U. Leonhardt, and H. Paul, “Homodyne detection of the density matrix of the radiation field,” Phys. Rev. A 52, R1801–R1805 (1995). [CrossRef] [PubMed]
  19. U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M. G. Raymer, “Sampling of photon statistics and density matrix using homodyne detection,” Opt. Commun. 127, 144–160 (1996). [CrossRef]
  20. A. Zucchetti, W. Vogel, M. Tasche, and D.-G. Welsch, “Direct sampling of density matrices in field-strength bases,” Phys. Rev. A 54, 1678–1681 (1996). [CrossRef] [PubMed]
  21. M. Fatih Erden, H. M. Ozaktas, and D. Mendlovic, “Propagation of mutual intensity expressed in terms of the fractional Fourier transform,” J. Opt. Soc. Am. A 13, 1068–1071 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited