OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 248–260

Surface mode at isotropic–uniaxial and isotropic–biaxial interfaces

D. B. Walker, E. N. Glytsis, and T. K. Gaylord  »View Author Affiliations


JOSA A, Vol. 15, Issue 1, pp. 248-260 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000248


View Full Text Article

Acrobat PDF (399 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The surface mode that propagates along the interface between isotropic and uniaxial materials, as first suggested by M. I. D’Yakonov [Sov. Phys. JETP <b>67</b>, 714 (1988)], is quantitatively characterized in terms of (1) the range of crystallographic orientations for which the mode propagates, (2) its propagation constant β, and (3) its field profiles. Previous studies have considered only uniaxial materials whose optic axis is in the plane of the interface. We show that a surface mode can also propagate along the interface between isotropic and arbitrarily oriented uniaxial or biaxial materials. This mode is also quantitatively characterized. For the biaxial material oriented so that its optic axes lie in the plane of the interface, it is shown that this surface mode is guided over a greater range of propagation directions and that the light is confined more tightly than for any isotropic–uniaxial interface of comparable birefringence. In addition, it is shown that the surface modes that occur at isotropic–uniaxial interfaces combine to form a new type of hybrid mode in uniaxial slab waveguides (two interfaces). The resulting modes differ from conventional slab waveguide modes in that (1) they are composed entirely of inhomogeneous waves and (2) at most two of these modes can exist regardless of the waveguide thickness.

© 1998 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves

Citation
D. B. Walker, E. N. Glytsis, and T. K. Gaylord, "Surface mode at isotropic–uniaxial and isotropic–biaxial interfaces," J. Opt. Soc. Am. A 15, 248-260 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-1-248


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. R. Wait, “Electromagnetic surface waves,” in Advances in Radio Research, J. A. Saxton, ed. (Academic, New York, 1964), Vol. 1, pp. 157–218.
  2. E. Burstein, W. P. Chen, Y. J. Chen, and A. Hartstein, “Surface polaritons—propagating electromagnetic modes at interfaces,” J. Vac. Sci. Technol. 11, 1004–1019 (1974).
  3. K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron. 23, 1–27 (1991).
  4. D. E. N. Brancus, “Polaritons in uniaxial crystals,” Rev. Roum. Phys. 29, 815–822 (1984).
  5. D. E. N. Brancus, “Polaritons in uniaxial crystals. II: the energy propagation,” Rev. Roum. Phys. 35, 385–394 (1990).
  6. V. N. Lyubimov and D. G. Sannikov, “Surface electromagnetic waves in a uniaxial crystal,” Sov. Phys. Solid State 14, 575–579 (1972).
  7. D. F. Băsa, A. Y. Zarenin, S. P. Makarenko, and S. V. Strizhevskĭ, “Surface polaritons in biaxial crystals,” Sov. Phys. Solid State 27, 631–633 (1985).
  8. D. Mihalache, D. M. Baboiu, M. Ciumac, L. Torner, and J. P. Torres, “Guided waves in anisotropic antiguide structures,” Opt. Commun. 108, 239–242 (1994).
  9. M. I. D’Yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).
  10. N. S. Averkiev and M. I. D’Yakonov, “Electromagnetic waves localized at the interface of transparent anisotropic media,” Sov. Phys. JETP 68, 653–655 (1990).
  11. L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultra-thin films,” J. Lightwave Technol. 13, 2027–2033 (1995).
  12. L. Torner, C. Santos, J. P. Torres, and D. Mihalache, “New waveguide modes in anisotropic structures,” Fiber Integr. Opt. 13, 271–280 (1994).
  13. L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent media,” IEEE Photonics Technol. Lett. 5, 201–203 (1993).
  14. M. Ciumac and D. Mihalache, “Properties of Bragg reflectors composed of isotropic dielectric layers cladded with birefringent media,” IEEE J. Quantum Electron. 32, 513–518 (1996).
  15. M. Ciumac and D. Mihalache, “Hybrid modes in asymmetric periodic stratified dielectric waveguides,” J. Opt. Soc. Am. A 12, 1695–1701 (1995).
  16. M. Ciumac, D.-M. Baboiu, and D. Mihalache, “Hybrid surface modes in periodic stratified media: transfer matrix technique,” Opt. Commun. 111, 548–555 (1994).
  17. A. Knoesen, T. K. Gaylord, and M. G. Moharam, “Hybrid guided modes in uniaxial dielectric planar waveguides,” J. Lightwave Technol. 6, 1083–1104 (1988).
  18. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961).
  19. T. A. Maldonado and T. K. Gaylord, “Hybrid guided modes in biaxial planar waveguides,” J. Lightwave Technol. 14, 486–499 (1996).
  20. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
  21. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1988).
  22. S. T. Lagerwall and N. A. Clark, “Ferroelectric liquid crystals: the development of devices,” Ferroelectrics 94, 3–62 (1989).
  23. D. B. Walker, E. N. Glytsis, and T. K. Gaylord, “Ferroelectric liquid crystal waveguide modulation based on switchable uniaxial–uniaxial interface,” Appl. Opt. 35, 3016–3030 (1996).
  24. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarva, J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide, 2nd ed. (Society for Industrial and Applied Mathematics, Philadelphia, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited