OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 10 — Oct. 1, 1998
  • pp: 2620–2628

Superresolved image reconstruction of images taken through the turbulent atmosphere

D. R. Gerwe and M. A. Plonus  »View Author Affiliations

JOSA A, Vol. 15, Issue 10, pp. 2620-2628 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Superresolved image reconstruction is demonstrated by use of multiple images taken through atmospheric turbulence under photon-limited conditions. An iterative reconstruction algorithm applies estimate-maximize techniques to a series of short-exposure images of the desired object scene along with the corresponding image sequence of a guide star. Simulations show that estimates of the Fourier components both below and above the diffraction limit are improved at successive iterations. The estimated images give finer detail of the original object than does the diffraction-limited image. Effects of photon-noise levels on restoration performance are investigated, and a modification to the reconstruction algorithm is derived that accounts for the effects of CCD read noise.

© 1998 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(280.7060) Remote sensing and sensors : Turbulence
(290.1310) Scattering : Atmospheric scattering
(350.1260) Other areas of optics : Astronomical optics
(110.3010) Imaging systems : Image reconstruction techniques

Original Manuscript: January 5, 1998
Revised Manuscript: June 12, 1998
Manuscript Accepted: June 15, 1998
Published: October 1, 1998

D. R. Gerwe and M. A. Plonus, "Superresolved image reconstruction of images taken through the turbulent atmosphere," J. Opt. Soc. Am. A 15, 2620-2628 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Ayers, J. Dainty, “Iterative blind deconvolution method and its applications,” Opt. Lett. 13, 547–549 (1988). [CrossRef]
  2. A. W. Lohmann, G. Weigelt, B. Winnitzer, “Speckle masking in astronomy: triple correlation theory and applications,” Appl. Opt. 22, 4028–4037 (1983). [CrossRef] [PubMed]
  3. J. Meng, G. Aitken, “Triple-correlation and Knox–Thompson stellar image reconstruction at high signal levels,” J. Opt. Soc. Am. A 12, 284–290 (1995). [CrossRef]
  4. P. Nisenson, C. Papaliolios, “Effects of photon noise on speckle image reconstruction with the Knox–Thompson algorithm,” Opt. Eng. (Bellingham) 47, 91–96 (1983).
  5. T. J. Schulz, “Multiframe blind deconvolution of astronomic images,” J. Opt. Soc. Am. A 10, 1064–1073 (1993). [CrossRef]
  6. D. G. Sheppard, B. R. Hunt, M. W. Marcellin, “Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery,” J. Opt. Soc. Am. A 15, 978–992 (1998). [CrossRef]
  7. D. Gavel, J. Morris, R. Vernon, “Systematic design and analysis of laser-guide-star adaptive-optics systems for large telescopes,” J. Opt. Soc. Am. A 11, 914–924 (1994). [CrossRef]
  8. J. Shamir, D. Crowe, J. Beletic, “Improved compensation of atmospheric turbulence effects by multiple mirror systems,” Appl. Opt. 32, 4618–4628 (1993). [CrossRef] [PubMed]
  9. B. Welsh, C. Gardner, “Effects of turbulence-induced anisoplanatism on the imaging performance of adaptive-astronomical telescopes using laser guide stars,” J. Opt. Soc. Am. A 8, 69–80 (1991). [CrossRef]
  10. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994). [CrossRef]
  11. I. A. De La Rue, B. L. Ellerbroek, “A study of multiple guide stars to improve the performance of laser guide star adaptive optical systems,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353 (1998), paper 67. [CrossRef]
  12. D. R. Gerwe, M. A. Plonus, “Image restoration of multiple noisy images by use of a priori knowledge of the anisoplanatic point-spread function,” Opt. Lett. 23, 83–85 (1998). [CrossRef]
  13. T. J. Holmes, “Maximum-likelihood image restoration for noncoherent optical imaging,” J. Opt. Soc. Am. A 5, 666–673 (1988). [CrossRef]
  14. C. L. Matson, “Fourier spectrum extrapolation and enhancement using support constraints,” J. Opt. Soc. Am. A 11, 156–163 (1994).
  15. D. Fried, “Analysis of the CLEAN algorithm and implications for superresolution,” J. Opt. Soc. Am. A 12, 853–860 (1995). [CrossRef]
  16. P. J. Sementilli, B. R. Hunt, M. S. Nadar, “Analysis of the limit to superresolution in incoherent imaging,” J. Opt. Soc. Am. A 10, 2265–2276 (1993). [CrossRef]
  17. A. Dempster, N. Laird, D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Statist. Soc. Ser. B 39, 1–38 (1977).
  18. A. K. Katsaggelos, K. T. Lay, “Maximum likelihood blur identification and image restoration using the EM algorithm,” IEEE Trans. Signal Process. 39, 729–733 (1991). [CrossRef]
  19. D. Gerwe, M. Plonus, B. Elsebelgy, “Speckle imaging of coherent sources,” in Laser Radar Technology and Applications, G. W. Kamerman, ed. Proc. SPIE2748, 258–271 (1996). [CrossRef]
  20. L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. MI-1, 113–122 (1982). [CrossRef]
  21. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  22. D. Dayton, S. Sandven, “Hybrid blind deconvolution with high photon noise,” in Optics in Atmospheric Propagation and Random Phenomena, A. Kohnle, A. D. Devir, eds., Proc. SPIE2312, 347–352 (1994). [CrossRef]
  23. H. Lantéri, M. Barilli, H. Beaumont, C. Aime, P. Gaucherel, H. Touma, “Comparison of several algorithms for blind deconvolution. Analysis of noise effects,” in Optics in Atmospheric Propagation and Random Phenomena, A. Kohnle, A. D. Devir, eds., Proc. SPIE2580, 275–287 (1995).
  24. A. Glindemann, R. Lane, J. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993). [CrossRef]
  25. R. Lane, A. Glindeman, J. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  26. M. Charnotskii, V. Myakinon, V. Zavorotny, “Observation of superresolution in nonisoplanatic imaging through turbulence,” J. Opt. Soc. Am. A 7, 1345–1350 (1990). [CrossRef]
  27. D. Gerwe, M. Plonus, B. Elsebelgy, “Long exposure imaging through weak turbulence,” in Optics in Atmospheric Propagation and Random Phenomena, A. Kohnle, A. D. Devir, eds., Proc. SPIE2580, 226–242 (1995).
  28. C. A. Haniff, “Diffraction and resolving power,” J. Opt. Soc. Am. 34, 931–936 (1964).
  29. B. R. Hunt, P. J. Sementilli, “Description of a Poisson imagery superresolution algorithm,” Astron. Soc. Pacific Conf. Ser. 25, 196–199 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited