OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 10 — Oct. 1, 1998
  • pp: 2735–2744

Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law

Jean-Jacques Greffet and Manuel Nieto-Vesperinas  »View Author Affiliations


JOSA A, Vol. 15, Issue 10, pp. 2735-2744 (1998)
http://dx.doi.org/10.1364/JOSAA.15.002735


View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A generalized bidirectional distribution function (BRDF) that relates the specific intensity of the scattered light from a semi-infinite medium to the specific intensity of the incident light is introduced in the framework of coherence theory. This derivation allows us to obtain from first principles several fundamental properties: First, it is established that the generalized BRDF takes the form of a nonlocal relation between the incident and the scattered specific intensities. This nonlocal structure allows us to account naturally for the lateral shift of a beam. Second, the generalized BRDF is the Fourier transform of the correlation function that describes the memory effect. Third, the Helmholtz principle for specific intensities is derived as a theorem from the reciprocity property of the scattering operator for wave fields. This result allows us to prove Kirchhoff’s law.

© 1998 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.5630) Coherence and statistical optics : Radiometry
(120.5700) Instrumentation, measurement, and metrology : Reflection
(240.6700) Optics at surfaces : Surfaces
(290.0290) Scattering : Scattering

History
Original Manuscript: March 6, 1998
Revised Manuscript: June 15, 1998
Manuscript Accepted: June 16, 1998
Published: October 1, 1998

Citation
Jean-Jacques Greffet and Manuel Nieto-Vesperinas, "Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law," J. Opt. Soc. Am. A 15, 2735-2744 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-10-2735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, Washington, D.C., 1981).
  2. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968). [CrossRef]
  3. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 63, 1622–1623 (1973). [CrossRef]
  4. E. W. Marchand, E. Wolf, “Radiometry with sources of any state of coherence,” J. Opt. Soc. Am. 64, 1219–1226 (1974). [CrossRef]
  5. W. H. Carter, E. Wolf, “Coherence and radiometry with quasi-homogeneous planar sources,” J. Opt. Soc. Am. 67, 785–796 (1977). [CrossRef]
  6. E. Wolf, “New theory of radiative energy transfer in free electromagnetic fields,” Phys. Rev. D 13, 869–886 (1976). [CrossRef]
  7. E. Wolf, “Coherence and radiometry (R),” J. Opt. Soc. Am. 68, 6–17 (1978). [CrossRef]
  8. A. S. Marathay, Elements of Optical Coherence Theory (Wiley, New York, 1982).
  9. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  10. F. J. J. Clarke, D. J. Parry, “Helmholtz reciprocity: its validity and application to reflectometry,” Light. Res. Technol. 17, 1–11 (1985). [CrossRef]
  11. H. von Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, Hamburg, 1909).
  12. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767–773 (1965). [CrossRef]
  13. F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9, 1474–1475 (1970). [CrossRef] [PubMed]
  14. J. C. Stover, Optical Scattering (McGraw-Hill, New York, 1990).
  15. J. W. S. Rayleigh, Theory of Sound (Macmillan, London, 1896).
  16. D. S. Saxon, “Tensor scattering matrix for the electromagnetic field,” Phys. Rev. 100, 1771–1775 (1955). [CrossRef]
  17. R. G. Newton, Scattering Theory of Waves and Particles (Springer-Verlag, New York, 1982).
  18. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. M. Nieto-Vesperinas, E. Wolf, “Generalized Stokes reciprocity relations for scattering from dielectric objects of arbitrary shape,” J. Opt. Soc. Am. A 3, 2038–2046 (1986). [CrossRef]
  20. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).
  21. R. Carminati, M. Nieto-Vesperinas, J.-J. Greffet, “Reciprocity of electromagnetic waves,” J. Opt. Soc. Am. A 15, 706–712 (1998). [CrossRef]
  22. H. Okayama, I. Ogura, “Experimental verification of nonreciprocal response in light scattering from rough surfaces,” Appl. Opt. 19, 3349–3352 (1984). [CrossRef]
  23. H. J. Eom, “Energy conservation and reciprocity of random rough surface scattering,” Appl. Opt. 24, 1730–1732 (1985). [CrossRef] [PubMed]
  24. W. H. Venable, “Comments on reciprocity failure,” Appl. Opt. 24, 3943 (1985). [CrossRef] [PubMed]
  25. M. J. Kim, “Verification of reciprocity theorem,” Appl. Opt. 27, 2645–2646 (1988). [CrossRef] [PubMed]
  26. M. Huetz-Aubert, J. Taine, “Rôle de la réflexion ou de la diffusion dans la deuxième loi de Kirchhoff, dite aussi loi de Draper,” Rev. Gen. Therm. 1, 755–764 (1978).
  27. P. J. Hesketh, J. N. Zemel, B. Gebhart, “Organ pipes radiant modes of micromachined silicon surfaces,” Nature (London) 352, 549–551 (1986). [CrossRef]
  28. P. J. Hesketh, J. N. Zemel, B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: angular variation,” Phys. Rev. B 37, 10803–10813 (1988). [CrossRef]
  29. P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: the normal direction,” Phys. Rev. B 37, 10795–10802 (1988). [CrossRef]
  30. J. LeGall, “Etude experimentale et théorique de la propagation d’ondes de surface sur un réseau. Application à la modification des propriétés radiatives infrarouges de matériaux,” Ph.D. dissertation (Ecole Centrale Paris, Paris, 1996).
  31. J. LeGall, M. Olivier, J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55, 10105–10114 (1997). [CrossRef]
  32. S. M. Rytov, Y. A. Kravtsov, V. I. Tatarskii, Principles of Statistical Radiophysics, Vol. 3: Elements of Random Fields (Springer-Verlag, Berlin, 1989).
  33. D. Bertilone, “Radiometric coherence tensors for thermal radiation emission from an opaque specular surface,” J. Opt. Soc. Am. A 14, 693–702 (1997). [CrossRef]
  34. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  35. M. Nieto-Vesperinas, “Classical radiometry and radiative transfer theory: a short-wavelength limit of a general mapping of cross-spectral densities in second-order coherence theory,” J. Opt. Soc. Am. A 3, 1354–1359 (1986). [CrossRef]
  36. J. T. Foley, E. Wolf, “Radiometry as a short-wavelength limit of statistical wave theory with globally incoherent sources,” Opt. Commun. 55, 236–241 (1985). [CrossRef]
  37. E. Wolf, “Radiometric model for propagation of coherence,” Opt. Lett. 19, 2024–2026 (1994). [CrossRef] [PubMed]
  38. K. Kim, E. Wolf, “Propagation law for Walther’s first generalized radiance function and its short-wavelength limit with quasi-homogeneous sources,” J. Opt. Soc. Am. A 4, 1233–1236 (1987). [CrossRef]
  39. E. W. Marchand, E. Wolf, “Angular correlations and the far-zone behavior of partially coherent fields,” J. Opt. Soc. Am. 62, 379–385 (1972). [CrossRef]
  40. D. Léger, E. Mathieu, J. C. Perrin, “Optical surface roughness determination using speckle correlation techniques,” Appl. Opt. 14, 872–877 (1975). [CrossRef]
  41. D. Léger, J. C. Perrin, “Real-time measurement of surface roughness by correlation of speckle pattern,” J. Opt. Soc. Am. 66, 1210–1217 (1976). [CrossRef]
  42. H. M. Pedersen, “Second-order statistics of light diffracted from Gaussian rough surfaces with applications to the roughness dependence of speckles,” Opt. Acta 22, 523–535 (1975). [CrossRef]
  43. G. S. Brown, “A stochastic Fourier transform from perfectly conducting randomly rough surfaces,” IEEE Trans. Antennas Propag. AP-30, 1135–1143 (1982). [CrossRef]
  44. S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988). [CrossRef] [PubMed]
  45. R. Berkovits, M. Kaveh, S. Feng, “Memory effect of waves in disordered systems: a real-space approach,” Phys. Rev. B 40, 737–740 (1989). [CrossRef]
  46. I. Freund, M. Rosenbluh, S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988). [CrossRef] [PubMed]
  47. M. Nieto-Vesperinas, J. A. Sanchez-Gil, “Enhanced long-range correlations of coherent waves reflected from disordered media,” Phys. Rev. B 46, 3112–3115 (1992). [CrossRef]
  48. M. Nieto-Vesperinas, J. Sanchez-Gil, “Intensity angular correlations of light multiply scattered from random rough surfaces,” J. Opt. Soc. Am. A 10, 150–157 (1993). [CrossRef]
  49. T. R. Michel, K. A. O’Donnell, “Angular correlation functions of amplitudes scattered from a one-dimensional, perfectly conducting rough surface,” J. Opt. Soc. Am. A 9, 1374–1384 (1992). [CrossRef]
  50. M. E. Knotts, T. R. Michel, K. A. O’Donnell, “Angular correlation functions of polarized intensities from a one-dimensionally rough surface,” J. Opt. Soc. Am. A 9, 1822–1831 (1992). [CrossRef]
  51. J. H. Li, A. Z. Genack, “Correlation in laser speckle,” Phys. Rev. E 49, 4530–4533 (1994). [CrossRef]
  52. T. Chan, Y. Kuga, A. Ishimaru, “Subsurface detection of a buried object using angular correlation function measurement,” Waves Random Media 7, 457–466 (1997). [CrossRef]
  53. B. R. Horowitz, T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am. 61, 586–594 (1971). [CrossRef]
  54. W. Nasalski, “Modified reflectance and geometrical deformations of Gaussian beams reflected at a dielectric interface,” J. Opt. Soc. Am. A 6, 1447–1454 (1989). [CrossRef]
  55. C. Imbert, Y. Levy, “Déplacement d’un faisceau lumineux par réflexion totale: filtrage des états de polarisation et amplification,” Nouv. Res. Opt. 6, 285–296 (1975). [CrossRef]
  56. J. P. Hugonin, R. Petit, M. Cadilhac, “Plane-wave expansions used to describe the field diffracted by a grating,” J. Opt. Soc. Am. 71, 593–598 (1981). [CrossRef]
  57. T. Tamir, “Nonspecular phenomena in beam fields reflected by multilayered media,” J. Opt. Soc. Am. A 3, 558–565 (1986). [CrossRef]
  58. F. Falco, T. Tamir, “Improved analysis of nonspecular phenomena in beams reflected from stratified media,” J. Opt. Soc. Am. A 7, 185–190 (1990). [CrossRef]
  59. J. J. Greffet, C. Baylard, “Nonspecular astigmatic reflection of a 3D Gaussian beam on an interface,” Opt. Commun. 93, 271–276 (1992). [CrossRef]
  60. F. Bretenaker, A. L. Floch, L. Dutriaux, “Direct measurement of the optical Goos–Hanchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992). [CrossRef] [PubMed]
  61. J.-J. Greffet, C. Baylard, “Nonspecular reflection from a lossy dielectric,” Opt. Commun. 18, 1129–1131 (1993).
  62. L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited