OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 11 — Nov. 1, 1998
  • pp: 2827–2840

Image reconstruction using symmetric convolution and discrete trigonometric transforms

T. M. Foltz and B. M. Welsh  »View Author Affiliations

JOSA A, Vol. 15, Issue 11, pp. 2827-2840 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (529 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate how the symmetric convolution-multiplication property of the discrete trigonometric transforms can be applied to problems in image reconstruction. This property allows for linear filtering of degraded images by means of point-by-point multiplication in the transform domain of trigonometric transforms. Specifically, in the transform domain of a type II discrete cosine transform, there is an asymptotically optimum energy compaction near d.c. for highly correlated images, which has advantages in reconstructing images with high-frequency noise. The symmetric convolution-multiplication property allows for scalar representations in the transform-domain space of discrete trigonometric transforms for linear reconstruction filters such as the Wiener filter. An analysis of the scalar Wiener filter’s performance in the trigonometric transform domain is given.

© 1998 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.1830) Image processing : Deconvolution
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(100.2980) Image processing : Image enhancement
(100.3020) Image processing : Image reconstruction-restoration

Original Manuscript: March 18, 1998
Revised Manuscript: July 27, 1998
Manuscript Accepted: July 6, 1998
Published: November 1, 1998

T. M. Foltz and B. M. Welsh, "Image reconstruction using symmetric convolution and discrete trigonometric transforms," J. Opt. Soc. Am. A 15, 2827-2840 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Ahmed, T. Natarajan, K. R. Rao, “Discrete cosine transform,” IEEE Trans. Computers C-23, 90–93 (1974). [CrossRef]
  2. A. K. Jain, “A sinusoidal family of unitary transforms,” IEEE Trans. Pattern. Anal. Mach. Intell. PAMI-1, 356–365 (1979). [CrossRef]
  3. A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  4. K. R. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications (Academic, San Diego, Calif., 1990).
  5. S. A. Martucci, “Symmetric convolution and the discrete sine and cosine transforms,” IEEE Trans. Signal Process. 42, 1038–1051 (1994). [CrossRef]
  6. A. V. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).
  7. B. R. Hunt, “A matrix theory proof of the discrete convolution theorem,” IEEE Trans. Audio Electroacoust. AU-19, 285–288 (1971). [CrossRef]
  8. R. A. Horn, C. R. Johnson, Topics in Matrix Analysis (Cambridge U. Press, New York, 1991).
  9. B. R. Hunt, “The application of constrained least squares estimation to image restoration by digital computer,” IEEE Trans. Computers C-22, 805–812 (1973). [CrossRef]
  10. A. Graham, Kronecker Products and Matrix Calculus with Applications (Wiley, New York, 1981).
  11. S. A. Martucci, “Digital filtering of images using the discrete sine and cosine transforms,” Opt. Eng. 35, 119–127 (1996). [CrossRef]
  12. Z. Wang, “Fast algorithms for the discrete W transform and for the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-32, 803–816 (1984). [CrossRef]
  13. T. M. Foltz, B. M. Welsh, “Symmetric convolution of asymmetric multidimensional sequences using discrete trigonometric transforms,” IEEE Trans. Image Process. (to be published).
  14. R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, Mass., 1992).
  15. L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, Reading, Mass., 1991).
  16. C. W. Therrien, Discrete Random Signals and Statistical Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1992).
  17. S. M. Kay, Fundamentals of Statistical Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  18. W. K. Pratt, “Generalized Wiener filter computation techniques,” IEEE Trans. Computers C-21, 636–641 (1972). [CrossRef]
  19. B. R. Hunt, T. M. Cannon, “Nonstationary assumptions for Gaussian models of images,” IEEE Trans. Syst. Man Cybern. SMC-6, 876–882 (1976).
  20. M. R. Whiteley, B. M. Welsh, M. C. Roggemann, “Limitations of Gaussian assumptions for the irradiance distribution in digital imagery: nonstationary image ensemble considerations,” J. Opt. Soc. Am. A 15, 802–810 (1998). [CrossRef]
  21. C. L. Matson, “Fourier spectrum extrapolation and enhancement using support constraints,” IEEE Trans. Signal Processing 42, 156–163 (1994). [CrossRef]
  22. J. W. Woods, “Two-dimensional discrete Markovian fields,” IEEE Trans. Inf. Theory IT-18, 232–240 (1972). [CrossRef]
  23. J. A. Stuller, B. Kurz, “Two-dimensional Markov representations of sampled images,” IEEE Trans. Commun. COM-24, 1148–1152 (1976). [CrossRef]
  24. T. M. Foltz, “Trigonometric transforms for image reconstruction,” Ph.D dissertation (Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 1998).
  25. M. C. Roggemann, B. M. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  26. W. H. Chen, C. H. Smith, S. C. Fralick, “A fast computational algorithm for the discrete cosine transform,” IEEE Trans. Commun. COM-25, 1004–1009 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited