OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 12 — Dec. 1, 1998
  • pp: 3097–3106

Causes of atmospheric blur: comment on Atmospheric scattering effect on spatial resolution of imaging systems

N. S. Kopeika, I. Dror, and D. Sadot  »View Author Affiliations


JOSA A, Vol. 15, Issue 12, pp. 3097-3106 (1998)
http://dx.doi.org/10.1364/JOSAA.15.003097


View Full Text Article

Enhanced HTML    Acrobat PDF (2887 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A paper by Ben Dor [J. Opt. Soc. Am. A 14, 1329 (1997)] concludes that the blur we measured in our experiments was not atmospherically scattered light and that our theoretical model is incorrect because it violates the rules of linearity. Their work is based in part on “lack of raw data” in one of our experimental papers [J. Opt. Soc. Am A 12, 970 (1995)]. We present here the raw data measured in the experiments in question, which show clearly the measured atmospherically scattered light. Similar raw data has also been published elsewhere regarding other experiments. We also clarify some rules of linear systems that justify our conceptual approach, which is shown to be similar to that of turbulence modulation transfer function. A review of several dozen experiments and analyses by other investigators all over the world that directly contradict the Ben Dor et al. results and conclusions is presented. The well-known significance of aerosol blur in imaging through the atmosphere from satellites is discussed, and pictorial examples of satellite imagery are shown for different atmospheric optical depths. It is noted that atmospheric point-spread-function analyses in the remote-sensing literature generally neglect turbulence blur altogether and deal with aerosol blur only, which is often called the adjacency effect, and that such phenomena are well supported by many different types of experiments and many different Monte Carlo simulations for many different aerosol and instrumentation parameter situations. The Monte Carlo simulation results of Ben Dor et al. are shown also to contradict everyday reality such as the solar aureole. This wealth of literature by others strongly contradicts the results of Ben Dor et al. and confirms our conclusion that forward scatter of light by aerosols is indeed a significant source of blur in imaging through the atmosphere, especially if atmospheric optical depth is on the order of unity or more. This can be confirmed, too, by any observer looking through binoculars at the moon and surrounding moonlight even on a clear night. A broad system engineering approach involving both aerosol and turbulence blur is called for.

© 1998 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7060) Atmospheric and oceanic optics : Turbulence
(110.0110) Imaging systems : Imaging systems
(110.4100) Imaging systems : Modulation transfer function
(110.7050) Imaging systems : Turbid media
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.1090) Scattering : Aerosol and cloud effects
(290.2200) Scattering : Extinction
(290.4210) Scattering : Multiple scattering
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: July 28, 1997
Revised Manuscript: April 7, 1998
Manuscript Accepted: August 24, 1998
Published: December 1, 1998

Citation
N. S. Kopeika, I. Dror, and D. Sadot, "Causes of atmospheric blur: comment on Atmospheric scattering effect on spatial resolution of imaging systems," J. Opt. Soc. Am. A 15, 3097-3106 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-12-3097


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997). [CrossRef]
  2. I. Dror, N. S. Kopeika, “Experimental comparison of turbulence modulation transfer function and aerosol modulation transfer function through the open atmosphere,” J. Opt. Soc. Am. A 12, 970–980 (1995). [CrossRef]
  3. L. R. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992). [CrossRef]
  4. J. B. Develis, G. B. Parrent, “Transfer functions for cascaded optical systems,” J. Opt. Soc. Am. 57, 1486–1490 (1967). [CrossRef]
  5. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  6. D. L. Fried, “Limiting resolution looking down through the atmosphere,” J. Opt. Soc. Am. 56, 1380–1384 (1966). [CrossRef]
  7. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  8. For example, D. L. Walters, D. L. Favier, J. R. Hines, “Vertical path atmospheric MTF measurements,” J. Opt. Soc. Am. 69, 827–837 (1979). [CrossRef]
  9. R. F. Lutomirski, H. T. Yura, “Wave structure function and mutual coherence function of an optical wave in a turbulent atmosphere,” J. Opt. Soc. Am. 61, 482–487 (1971). [CrossRef]
  10. L. Lutomirski, “Atmospheric degradation of electrooptical system performance,” Appl. Opt. 17, 3915–3921 (1978). [CrossRef] [PubMed]
  11. D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function,” J. Opt. Soc. Am. A 10, 172–179 (1993). [CrossRef]
  12. D. Sadot, N. S. Kopeika, “Effects of practical aerosol forward scatter of infrared and visible light on atmospheric coherence diameter,” Opt. Eng. 34, 261–268 (1995). [CrossRef]
  13. D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 1955–1972 (1994). [CrossRef]
  14. P. N. Slater, “Radiometric consideration in remote sensing,” Proc. IEEE 73, 992–1011 (1985). [CrossRef]
  15. W. A. Pearce, “A study of the effects of the atmosphere on Thematic Mapper observations,” (NASA, Washington, D.C., 1977).
  16. J. V. Dave, “Effect of atmospheric conditions on remote sensing of a surface non-homogeneity,” Photogram. Eng. Rem. Sens. 46, 1173–1180 (1980).
  17. J. Otterman, R. S. Fraser, “Adjacency effects on imaging by surface reflection and atmospheric scattering: cross radiance to zenith,” Appl. Opt. 18, 2852–2860 (1979). [CrossRef] [PubMed]
  18. Y. J. Kaufman, “Atmospheric effects on spatial resolution of surface imagery,” Appl. Opt. 23, 4164–4172 (1984). [CrossRef]
  19. Y. Mekler, Y. J. Kaufman, “The effect of the Earth atmosphere on contrast reduction for a nonuniform surface albedo and two-halves field,” J. Geophys. Res. 85, 4067–4083 (1980). [CrossRef]
  20. Y. J. Kaufman, “Solution of the equation of radiative transfer for remote sensing over nonuniform surface reflectivity,” J. Geophys. Res. 87, 4137–4147 (1982). [CrossRef]
  21. S. R. Odell, J. A. Weinman, “The effect of atmospheric haze on image of the Earth’s surface,” J. Geophys. Res. 80, 5035–5040 (1975). [CrossRef]
  22. S. Ueno, Y. Haba, Y. Kawata, T. Kusaka, Y. Terashita, “The atmospheric blurring effect on remotely-sensed Earth imagery,” in Remote Sensing of the Atmosphere, A. L. Fymat, V. E. Zuev, eds. (Elsevier, Amsterdam, 1979), pp. 303–319.
  23. Y. J. Kaufman, R. S. Fraser, “Atmospheric effect on classification of finite fields,” Remote Sensing Env. 15, 95–118 (1984). [CrossRef]
  24. D. Tanre, M. Herman, P. Deschamps, A. de Leffe, “Atmospheric modeling for space measurements of ground reflections, including bidirectional properties,” Appl. Opt. 18, 3587–3594 (1979). [CrossRef] [PubMed]
  25. D. Tanre, P. Y. Deschamps, P. Duhaut, M. Herman, “Adjacency effect produced by the atmospheric scattering in thematic mapper data,” J. Geophys. Res. 92, 12000–12006 (1987). [CrossRef]
  26. Y. J. Kaufman, “Combined eye-atmosphere visibility model,” Appl. Opt. 20, 1525–1531 (1981). [CrossRef] [PubMed]
  27. D. Tanre, M. Herman, P. Y. Deschamps, “Influence of the background contribution upon space measurements of ground reflectance,” Appl. Opt. 20, 3676–3684 (1981). [CrossRef] [PubMed]
  28. W. Pearce, “Monte Carlo study of the atmospheric spread function,” Appl. Opt. 5, 438–447 (1986). [CrossRef]
  29. B. A. Kargin, S. V. Kuznetsov, G. A. Mikhaylov, “Monte Carlo estimates of brightness contrast transfer function in a light scattering medium,” Izv. Atmos. Oceanic Phys. 5, 717–722 (1979).
  30. V. V. Belov, V. E. Zuev, G. M. Krekov, “Visibility of distant objects in scattering media,” Izv. Atmos. Oceanic Phys. 8, 742–750 (1982).
  31. V. V. Belov, B. D. Borisov, V. N. Gemin, M. V. Kabanov, G. M. Krekov, “Experimental and mathematical modeling of the condition for seeing objects through a layer of a turbid medium,” Izv. Atmos. Oceanic Phys. 8, 1042–1047 (1982).
  32. D. Tanre, M. Herman, P. Y. Deschamps, “Influence of the background contribution upon space measurements of ground reflectance,” Appl. Opt. 20, 3676–3682 (1981). [CrossRef] [PubMed]
  33. W. A. Pearce, “A study of the effects of the atmosphere on thematic mapper observatories,” (EG&G Washington Analytical Services Center, Inc., Riverdale, Md., 1977).
  34. V. V. Belov, G. M. Krekov, “Effect of multiple scattering on the point-spread functions and modulation-transfer functions of the aerosol atmosphere in the problems of space-meteorological photography,” Opt. Lett. 4, 158–160 (1979). [CrossRef] [PubMed]
  35. P. N. Reinersman, K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453–4471 (1995). [CrossRef] [PubMed]
  36. A. Ishimaru, “Limitation on image resolution imposed by a random medium,” Appl. Opt. 17, 348–352 (1978). [CrossRef] [PubMed]
  37. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vols. 1 and 2.
  38. Y. J. Kaufman, C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-IR imagery,” Int. J. Remote Sens. 9, 1357–1381 (1988). [CrossRef]
  39. M. Griggs, “Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data,” J. Air Pollution Control Assoc. 25, 622–626 (1975). [CrossRef]
  40. Y. Mekler, H. Quenzel, G. Ohring, I. Marcus, “Relative atmospheric aerosol content from ERTS observations,” J. Geophys. Res. 82, 967–972 (1977). [CrossRef]
  41. P. Koepke, H. Quenzel, “Turbidity of the atmosphere determined from satellite calculation of optimum viewing geometry,” J. Geophys. Res. 84, 7847–7855 (1979). [CrossRef]
  42. Y. J. Kaufman, “Satellite sensing of aerosol absorption,” J. Geophys. Res. 92, 4307–4317 (1987). [CrossRef]
  43. D. Tanre, P. Y. Deschamps, C. Deveaux, M. Herman, “Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data,” J. Geophys. Res. 93, 15955–15964 (1988). [CrossRef]
  44. Y. J. Kaufman, T. W. Brakke, E. Eloranta, “Field experiment to measure the radiative characteristics of a hazy atmosphere,” J. Atmos. Sci. 16, 1135–1151 (1986). [CrossRef]
  45. D. D. Dyche, “Experimental determination of atmospheric scattering effects on scanner edge response,” master’s thesis (University of Arizona, Tucson, Ariz., 1983).
  46. Y. Kawata, S. Ueno, T. Kusake, “Radiometric correction for atmospheric and topographic effects on Landsat MSS images,” Int. J. Remote Sens. 9, 729–748 (1988). [CrossRef]
  47. R. Richter, “Correction of atmospheric and topographic effects for high spatial resolution satellite imagery,” Int. J. Remote Sens. 18, 1099–1111 (1997). [CrossRef]
  48. Y. J. Kaufman, D. Tanre, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, P. T. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 16815–16830 (1997). [CrossRef]
  49. E. F. Vermote, N. El Saleous, C. O. Justice, Y. J. Kaufman, J. L. Privette, L. Remeer, J. C. Roger, D. Tanre, “Atmospheric correction of visible to middle infrared EOS-MODIS data over land surfaces: background, operational algorithm, and validation,” J. Geophys. Res. 102, 17131–17141 (1997). [CrossRef]
  50. Special issue, “Passive remote sensing of tropospheric aerosol and atmospheric corrections of the aerosol effect,” J. Geophys. Res. 102(D14) (1997).
  51. L. R. Bissonnette, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: comment,” J. Opt. Soc. Am. A 11, 1175–1179 (1994). [CrossRef]
  52. B. Ben Dor, A. D. Devir, G. Shaviv, “Atmospheric scattering effects on spatial resolution of imaging systems: experimental,” in The Tenth Meeting on Optical Engineeringin Israel, I. Shladov, S. R. Rotman, eds., Proc. SPIE3110, 23–33 (1997). [CrossRef]
  53. N. S. Kopeika, D. Sadot, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment,” J. Opt. Soc. Am. A 12, 1017–1023 (1995). [CrossRef]
  54. D. Sadot, S. Shamriz, I. Sasson, I. Dror, N. S. Kopeika, “Prediction of overall atmospheric MTF with standard weather parameters: comparison with measurements with two imaging systems,” Opt. Eng. 34, 3239–3248 (1995). [CrossRef]
  55. D. Sadot, G. Kitron, N. Kitron, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994). [CrossRef]
  56. N. S. Kopeika, J. Bordogna, “Background noise in optical communication systems,” Proc. IEEE 155, 1571–1577 (1970) and references therein. [CrossRef]
  57. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 418–421. In the second edition see Sec. 19.1.
  58. G. Newkirk, J. A. Eddy, “Light scattering by particles in the upper atmosphere,” J. Atmos. Sci. 21, 35–60 (1964). [CrossRef]
  59. D. Tanre, C. Deveaux, M. Herman, R. Santer, “Radiative properties of desert aerosols by optical ground-based measurements at solar wavelengths,” J. Geophys. Res. 93, 14223–14231 (1988). [CrossRef]
  60. R. A. McClatchey, R. W. Fenn, J. E. Selby, F. E. Volz, J. S. Garing, Optical Properties of the Atmosphere (Revised), (Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Mass., 1971).
  61. P. Bruscaglioni, G. Zaccanti, A. Ismaelli, P. Pili, “Comparison between measured and calculated contributions of multiple scattered radiation to the transmittance of a light beam through a turbid medium,” Radio Sci. 22, 899–905 (1987). [CrossRef]
  62. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Press, Bellingham, Wash., 1998), pp. 351–358 and 443–513.
  63. D. Sadot, R. Rosenfeld, G. Shuker, N. S. Kopeika, “High resolution restoration of images distorted by the atmosphere, based upon average atmospheric MTF,” Opt. Eng. 34, 1799–1807 (1995). [CrossRef]
  64. D. Sadot, N. S. Kopeika, S. R. Rotman, “Target acquisition modeling for contrast-limited imaging: effects of atmospheric blur and image restoration,” J. Opt. Soc. Am. A 12, 2401–2414 (1995). [CrossRef]
  65. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Press, Bellingham, Wash., 1998), pp. 517–561.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited