OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 503–510

Field distribution inside one-dimensional random photonic lattices

Sergei A. Bulgakov and Manuel Nieto-Vesperinas  »View Author Affiliations


JOSA A, Vol. 15, Issue 2, pp. 503-510 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000503


View Full Text Article

Acrobat PDF (287 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electromagnetic field distribution inside a one-dimensional random photonic lattice has been studied by using the transfer matrix method. We have considered incident waves at frequencies both within and outside the photonic bandgap. It is shown that in the vicinity of a Bragg remnant frequency, a random photonic lattice manifests a local maximum of the field intensity ensemble average inside the structure. The width of this maximum is much larger than a unit cell of the lattice.

© 1998 Optical Society of America

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(260.2110) Physical optics : Electromagnetic optics

Citation
Sergei A. Bulgakov and Manuel Nieto-Vesperinas, "Field distribution inside one-dimensional random photonic lattices," J. Opt. Soc. Am. A 15, 503-510 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-2-503


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. B. Pendry, “Symmetry and transport of waves in 1-D disordered systems,” Adv. Phys. 43, 461–542 (1994).
  2. C. M. Soukoulis, ed., Photonic Band Gaps and Localization Vol. 308 of NATO ASI series: Series B, Physics (Plenum, New York, 1993); M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures,” Opt. Commun. 80, 199–204 (1991); K. M. Leung and Y. F. Lin, “Photon band structures: The plane-wave method,” Phys. Rev. B 41, 10188–10190 (1990).
  3. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209 (1993); P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306 (1995); J. B. Pendry and P. M. Bell, “Transfer matrix techniques for Electromagnetic Waves,” in Photonic Band Gap Materials, C. M. Soukoulis, ed., Vol. 315 of NATO ASI Series: Series E, Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 203–228.
  4. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structure of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
  5. S. A. Bulgakov and M. Nieto-Vesperinas, “Competition of different scattering mechanisms in a one-dimensional random photonic lattice,” J. Opt. Soc. Am. A 13, 500–508 (1996).
  6. H. G. Algul, M. Khazhinsky, A. R. McGurn, and J. Kapenga, “Impurity modes from impurity clusters in photonic band structures,” J. Phys. Condens. Matter 7, 447–462 (1995).
  7. K. M. Leung, “Defect modes in photonic band structures: a Green’s function approach using vector Wannier functions,” J. Opt. Soc. Am. B 10, 303–306 (1993).
  8. D. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977); P. Yeh and A. Yariv, “Bragg reflection waveguide,” Opt. Commun. 19, 427–430 (1976).
  9. R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, and S. L. McCall, “Microwave localization by two-dimensional random scattering,” Nature (London) 354, 53–55 (1991); D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “Photonic band structures and defects in one and two dimensions,” J. Opt. Soc. Am. B 10, 314–321 (1993); D. R. Smith, S. Schultz, S. L. McCall, and P. M. Platzmann, “Defect studies in a two-dimensional periodic photonic lattice,” J. Mod. Opt. JMOPEW 41, 395–404 (1994).
  10. A. R. McGurn, K. T. Christensen, F. M. Mueller, and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical system that are periodic on average,” Phys. Rev. B 47, 13120–13125 (1993).
  11. S. A. Bulgakov and M. Nieto-Vesperinas, “Interaction of different scattering mechanisms in a one-dimensional random photonic lattice,” in Photonic Band Gap Materials, C. M. Soukoulis, ed., Vol. 315 of NATO ASI Series: Series E, Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 691–702; S. A. Bulgakov and M. Nieto-Vesperinas, “Frequency properties of random photonic lattices,” Waves Random Media 7, 183–192 (1997).
  12. S. Datta, C. T. Chan, K. M. Ho, C. M. Soukoulis, and E. N. Economou, “Photonic band gaps in periodic dielectric structures: Relation to the single-scatterer MIE resonances,” in Photonic Band Gaps and Localization, C. M. Soukoulis, ed., Vol. 308 of NATO ASI Series: Series B, Physics (Plenum, New York, 1993), pp. 289–297.
  13. C. Martijn de Sterke and R. C. McPhedran, “Bragg remnants in stratified random media,” Phys. Rev. B 47, 7780–7787 (1993).
  14. E. N. Economou, C. M. Soukoulis, and M. H. Cohen, “Localization for correlated binary-alloy disorder,” Phys. Rev. B 37, 4399–4407 (1988).
  15. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic, New York, 1995).
  16. Nian-hua Liu, “Defect modes of stratified dielectric media,” Phys. Rev. B 55, 4097–4101 (1997).
  17. Z. Daozhong, H. Wei, Z. Youlong, Z. Zhaolin, C. Bingying, and Y. Guozhen, “Experimental verification of light localization for disordered multilayers in the visible-infrared spectrum,” Phys. Rev. B 50, 9810–9814 (1994).
  18. J. P. Desideri and D. Sornette, “Band edge localization and spatial textures of surface acoustic waves in weakly disordered 1-D superlattices,” Europhys. Lett. 23, 165–170 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited