OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 511–523

Rigorous justification of the cylindrical localized approximation to speed up computations in the generalized Lorenz–Mie theory for cylinders

G. Gouesbet, G. Gréhan, and K. F. Ren  »View Author Affiliations


JOSA A, Vol. 15, Issue 2, pp. 511-523 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000511


View Full Text Article

Enhanced HTML    Acrobat PDF (355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To speed up the numerical computation of beam shape coefficients in the generalized Lorenz–Mie theory (GLMT) for cylinders, a cylindrical localized approximation has recently been introduced [J. Opt. Soc. Am. A 14, 3014 (1997)], in analogy with the localized approximation used for the GLMT for spheres. A rigorous justification of this cylindrical localized approximation is presented.

© 1998 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory

History
Original Manuscript: April 15, 1997
Manuscript Accepted: July 31, 1997
Published: February 1, 1998

Citation
G. Gouesbet, G. Gréhan, and K. F. Ren, "Rigorous justification of the cylindrical localized approximation to speed up computations in the generalized Lorenz–Mie theory for cylinders," J. Opt. Soc. Am. A 15, 511-523 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-2-511


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  2. B. Maheu, G. Gouesbet, G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988). [CrossRef]
  3. G. Gouesbet, G. Gréhan, B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, New York, 1991), Chap. 10, pp. 339–384.
  4. G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” Part. Part. Syst. Charact. 11, 22–34 (1994). [CrossRef]
  5. F. Onofri, G. Gréhan, G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995). [CrossRef] [PubMed]
  6. G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997). [CrossRef] [PubMed]
  7. E. Lenglart, G. Gouesbet, “The separability theorem in terms of distributions with discussion of electromagnetic scattering theory,” J. Math. Phys. 37, 4705–4710 (1996). [CrossRef]
  8. K. F. Ren, G. Gréhan, G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997). [CrossRef]
  9. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  10. G. Gouesbet, G. Gréhan, B. Maheu, “A localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
  11. J. A. Lock, G. Gouesbet, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. 1. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
  12. G. Gouesbet, J. A. Lock, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
  13. L. Schwartz, Théorie des distributions (Hermann, Paris, 1951).
  14. F. Roddier, Distributions et transformation de Fourier (McGraw-Hill, New York, 1982).
  15. E. Butkov, Mathematical Physics (Addison-Wesley, Reading, Mass., 1968).
  16. J. van Bladel, Singular Electromagnetic Fields and Sources (Clarendon, Oxford, 1991).
  17. G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. (Paris) 26, 225–239 (1995). [CrossRef]
  18. K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994). [CrossRef]
  19. G. Gouesbet, J. A. Lock, G. Gréhan, “Partial wave representation of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995). [CrossRef] [PubMed]
  20. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  21. G. Gouesbet, G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,” J. Opt. (Paris) 13, 97–103 (1982). [CrossRef]
  22. I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1980).
  23. G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. (Paris) 28, 45–65 (1997). [CrossRef]
  24. G. Gouesbet, “Higher-order descriptions of Gaussian beams,” J. Opt. (Paris) 27, 35–50 (1996). [CrossRef]
  25. J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  26. G. Arlken, Mathematical Methods for Physicists (Academic, New York, 1976).
  27. G. Gouesbet, C. Letellier, K. F. Ren, G. Gréhan, “Discussion of two quadrature methods to evaluate beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited