OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 3 — Mar. 1, 1998
  • pp: 706–712

Reciprocity of evanescent electromagnetic waves

Rémi Carminati, Manuel Nieto-Vesperinas, and Jean-Jacques Greffet  »View Author Affiliations


JOSA A, Vol. 15, Issue 3, pp. 706-712 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000706


View Full Text Article

Acrobat PDF (415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive reciprocity relations for the generalized reflection and transmission coefficients of vector wave fields containing evanescent components. This is done by using Lorentz’s reciprocity theorem with sources at finite distance from the scatterer.

© 1998 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics

Citation
Rémi Carminati, Manuel Nieto-Vesperinas, and Jean-Jacques Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A 15, 706-712 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-3-706


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Helmholtz, J. Reine Angew. Math. 67, 1 (1859); see also Lord Rayleigh, The Theory of Sound (Dover, New York, 1945), Sect. 294.
  2. P. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, Mass., 1965), pp. 282, 294.
  3. R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966), p. 46.
  4. E. Gerjuoy and D. S. Saxon, “Variational principles for the acoustic field,” Phys. Rev. 94, 1445–1458 (1954).
  5. D. S. Saxon, “Tensor scattering matrix for the electromagnetic field,” Phys. Rev. 100, 1771–1775 (1955).
  6. A. T. de Hoop, “A reciprocity theorem for the electromagnetic field scattered by an obstacle,” Appl. Sci. Res. Sect. B 8, 135–140 (1959).
  7. Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Part I, Sect. 7.5.
  8. M. Nieto-Vesperinas and E. Wolf, “Generalized Stokes reciprocity relations for scattering from dielectric objects of arbitrary shape,” J. Opt. Soc. Am. A 3, 2038–2046 (1986).
  9. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991), Chap. 5.
  10. M. Nieto-Vesperinas, “Reciprocity of the impulse response for scattering from inhomogeneous media and arbitrary dielectric bodies,” J. Opt. Soc. Am. A 5, 360–365 (1988).
  11. H. A. Lorentz, Versl. Gewone Vergad. Afd. Natuurkd. K. Ned. Akad. Wet. 4, 176–188 (1896); H. A. Lorentz, Collected Papers (Nijhoff, Den Haag, The Netherlands, 1936), Vol. III; see also M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991), Chap. 1, p. 8.
  12. G. C. Sherman, “Diffracted fields expressible by plane-wave expansions containing only homogeneous waves,” J. Opt. Soc. Am. 59, 697–711 (1969).
  13. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
  14. D. W. Pohl, “Scanning near-field optical microscopy,” in Advances in Optical and Electron Microscopy, C. J. R. Sheppard and T. Mulvey, eds. (Academic, New York, 1991), pp. 243–311.
  15. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984), Sect. 89.
  16. M. Born, Natural Philosophy of Cause and Chance (Dover, New York, 1964), pp. 22–26.
  17. The incident field is here the field created by the dipole p1, where p1 has to be understood as the value of the dipole in the presence of the scatterer. This corresponds to the usual definition of the incident field in scattering problems. Usually, the source is assumed to be located at infinity and also to be unaffected by the presence of the scatterer.
  18. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991), Chap. 3, pp. 83–84.
  19. R. W. P. King, Electromagnetic Engineering (McGraw-Hill, New York, 1945), Vol. I, p. 311.
  20. D. S. Jones, The Theory of Electromagnetism (Pergamon, Oxford, 1964), pp. 59–65.
  21. E. Wolf, G. S. Agarwal, and A. T. Friberg, “Wavefront correction and scattering with phase-conjugated waves,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), pp. 107–116.
  22. M. Nieto-Vesperinas and E. Wolf, “Phase conjugation and symmetries with wave fields in free space containing evanescent components,” J. Opt. Soc. Am. A 2, 1429–1434 (1985).
  23. R. J. Glauber, in Lectures in Theoretical Physics, W. E. Brittin and L. G. Dunham, eds. (Wiley-Interscience, New York, 1959), Vol. I, p. 315.
  24. P. Grivet, in Proceedings of the Symposium on Modern Optics, Vol. XVII of Microwave Research Institute Symposia Series (Wiley-Interscience, New York, 1967), pp. 467–479.
  25. R. Cadilhac, in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, New York, 1980), pp. 58–59.
  26. L. Onsager, “Reciprocal relations in irreversible processes,” Phys. Rev. 37, 405–426 (1931).
  27. H. B. G. Casimir, “On Onsager’s principle of microscopic reversibility,” Rev. Mod. Phys. 17, 343–350 (1945); “Reciprocity theorems and irreversible processes,” Proc. IEEE 51, 1570–1573 (1963).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited