OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 3 — Mar. 1, 1998
  • pp: 727–735

Analysis of a cylindrical dielectric waveguide with three regions by use of an invariant mode-definition parameter

Martin J. Lahart  »View Author Affiliations


JOSA A, Vol. 15, Issue 3, pp. 727-735 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000727


View Full Text Article

Acrobat PDF (280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Boundary conditions at a dielectric interface are expressed in terms of electrodynamic vector and scalar potentials that are expressed in terms of two-dimensional scalar solutions to the wave equation. Possible field configurations are expressed in terms of linear combinations of the scalar solutions. Their behavior at a dielectric interface and within a region of constant permittivity is investigated, and a parameter that is used to define propagation modes in cylindrical dielectric waveguides is shown to have the same value in regions with different permittivities. Scalar expressions that include this parameter are used to calculate exact expressions for fields and propagation constants in a cylindrical dielectric waveguide with three coaxial regions. The characteristics of propagation modes in these waveguides are discussed.

© 1998 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(230.7370) Optical devices : Waveguides
(260.2110) Physical optics : Electromagnetic optics
(350.7420) Other areas of optics : Waves

Citation
Martin J. Lahart, "Analysis of a cylindrical dielectric waveguide with three regions by use of an invariant mode-definition parameter," J. Opt. Soc. Am. A 15, 727-735 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-3-727


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Hondros and P. Debye, “Elektromagnetische Wellen an dielektrischen Drähten,” Ann. Phys. (Leipzig) Ser. 4 32, 465–476 (1910).
  2. D. Hondros, “Über elektromagnetische Drahtwellen,” Ann. Phys. (Leipzig) Ser. 4 30, 905–950 (1909).
  3. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961).
  4. S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. QE-10, 879–887 (1974).
  5. C. J. Chung and A. Safaai-Jazi, “Narrow-band spectral filter made of W-index and step-index fibers,” J. Lightwave Technol. LT-10, 42–45 (1992).
  6. K. Petermann, “Fundamental mode microbending loss in graded-index and W fibres,” Opt. Quantum Electron. 9, 167–175 (1977).
  7. M. H. Kuhn, “The influence of the refractive index step due to the finite cladding of homogeneous fibres on the hybrid properties of modes,” Archiv Elektron. Übertragungstech. 28, 393–401 (1974).
  8. J. A. Buck, Fundamentals of Optical Fibers (Wiley, New York, 1992), pp. 174–182.
  9. M. M. Astrahan, “Guided waves on hollow dielectric tubes,” Ph.D dissertation (Northwestern University, Evanston, Ill., 1949).
  10. D. G. Kiely, Dielectric Aerials (Methuen, London, 1953), pp. 82–96.
  11. H.-G. Unger, “Dielektrische Rohre als Wellenleiter,” Archiv Elektron. Übertragungstech. 8, 241–252 (1954).
  12. H.-G. Unger, Planar Optical Waveguides and Fibres (Clarendon, Oxford, 1977), pp. 308–321.
  13. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
  14. M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. QE-18, 535–542 (1982).
  15. G. Cancellieri, Single-Mode Optical Fibres (Pergamon, Oxford, 1991), pp. 129–145.
  16. A. W. Snyder and W. R. Young, “Modes of optical waveguides,” J. Opt. Soc. Am. 68, 297–309 (1978).
  17. P. K. Mishra, S. I. Hosain, I. C. Goyal, and A. Sharma, “Scalar variational analysis of single mode, graded-core, W-type fibres,” Opt. Quantum Electron. 16, 287–296 (1984).
  18. J. E. Sader, “Analysis of arbitrarily perturbed circular profiles by implementation of integral-equation theory,” J. Opt. Soc. Am. A 7, 2094–2099 (1990).
  19. M. S. Wu, M. H. Lee, and W. H. Tsai, “Variational analysis of single-mode graded core W-fibers,” J. Lightwave Technol. LT-14, 121–125 (1996).
  20. G. W. Wen, “Steepest-descent approximation theory for guided modes of weakly guiding optical waveguides and fibers,” J. Opt. Soc. Am. A 8, 295–302 (1991).
  21. C. Vasallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991), pp. 104–107.
  22. C. N. Kurtz and W. Streifer, “Guided waves in inhomogeneous focusing media. Part I: formulation, solution for quadratic inhomogeneity,” IEEE Trans. Microwave Theory Tech. MTT-17, 11–15 (1969).
  23. C. N. Kurtz and W. Streifer, “Guided waves in inhomogeneous focusing media. Part II: asymptotic solution for general weak inhomogeneity,” IEEE Trans. Microwave Theory Tech. MTT-17, 250–253 (1969).
  24. F. Irrera and C. G. Someda, “Monomode fibers with smooth core-cladding transitions and index dips: an analytical investigation,” J. Lightwave Technol. LT-6, 1177–1184 (1988).
  25. K. S. Chiang, “Analysis of optical fibers by the effective-index method,” Appl. Opt. 25, 348–354 (1986).
  26. M. R. Shenoy, K. Thyagarajan, and A. K. Ghatak, “Numerical analysis of optical fibers using matrix approach,” J. Lightwave Technol. LT-6, 1285–1291 (1988).
  27. A. W. Snyder and R. A. Sammut, “Fundamental (HE11) modes of graded optical fibers,” J. Opt. Soc. Am. 69, 1663–1671 (1979).
  28. H. Matsumura and T. Suganuma, “Normalization of single-mode fibers having an arbitrary index profile,” Appl. Opt. 19, 3151–3158 (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited