## Nonlinear effects of localized absorption perturbations on the light distribution in a turbid medium

JOSA A, Vol. 15, Issue 4, pp. 834-848 (1998)

http://dx.doi.org/10.1364/JOSAA.15.000834

Enhanced HTML Acrobat PDF (4822 KB)

### Abstract

A theoretical model of photon propagation in a scattering medium is presented, from which algebraic formulas for the detector-reading perturbations

© 1998 Optical Society of America

**OCIS Codes**

(110.0110) Imaging systems : Imaging systems

(190.0190) Nonlinear optics : Nonlinear optics

(290.7050) Scattering : Turbid media

**History**

Original Manuscript: June 13, 1997

Revised Manuscript: October 17, 1997

Manuscript Accepted: October 27, 1997

Published: April 1, 1998

**Citation**

Harry L. Graber, Raphael Aronson, and Randall L. Barbour, "Nonlinear effects of localized absorption perturbations on the light distribution in a turbid medium," J. Opt. Soc. Am. A **15**, 834-848 (1998)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-4-834

Sort: Year | Journal | Reset

### References

- R. L. Barbour, H. L. Graber, J. Chang, S.-L. S. Barbour, P. C. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Computational Sci. Eng. 2, 63–77 (1995). [CrossRef]
- J. Chang, H. L. Graber, R. L. Barbour, R. Aronson, “Recovery of optical cross-section perturbations in dense-scattering media using transport-theory-based imaging operators and steady-state simulated data,” Appl. Opt. 35, 3963–3978 (1996). [CrossRef] [PubMed]
- Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–342 (1997). [CrossRef]
- R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institutes for Advanced Optical Technologies (SPIE Press, Bellingham, Wash., 1993), pp. 87–120.
- H. L. Graber, J. Chang, R. Aronson, R. L. Barbour, “A perturbation model for imaging in dense scattering media: derivation and evaluation of imaging operators,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institutes for Advanced Optical Technologies (SPIE Press, Bellingham, Wash., 1993), pp. 121–143.
- S. R. Arridge, “The forward and inverse problems in time resolved infra-red imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institutes for Advanced Optical Technologies (SPIE Press, Bellingham, Wash., 1993), pp. 35–65.
- H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996). [CrossRef]
- M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Images of inhomogeneous turbid media using diffuse photon density waves,” in OSA Proceedings on Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 106–115.
- W. C. Chew, Y. M. Wang, “Reconstruction of two-dimensional permittivity distributions using the distorted Born iterative method,” IEEE Trans. Med. Imaging 9, 218–225 (1990). [CrossRef]
- H. L. Graber, R. L. Barbour, J. Chang, R. Aronson, “Identification of the functional form of nonlinear effects of localized finite absorption in a diffusing medium,” in Proceedings of Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 669–681 (1995). [CrossRef]
- G. Strang, Linear Algebra and Its Applications, 3rd ed. (Harcourt Brace Jovanovitch, San Diego, Calif., 1988), Chap. 5, pp. 269–272.
- G. Strang, Linear Algebra and its Applications, 3rd ed. (Harcourt Brace Jovanovitch, San Diego, Calif., 1988), Chap. 7, pp. 370–372.
- F. S. Acton, Numerical Methods That Work, 2nd printing (Mathematical Association of America, Washington, D.C.1990), Chap. 8, pp. 211–220.
- K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994). [CrossRef]
- A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1774 (1996). [CrossRef] [PubMed]
- F. H. Schlereth, J. M. Fossaceca, A. D. Keckler, R. L. Barbour, “Imaging in diffusing media with a neural net formulation: A problem in large scale computation,” in Proceedings of Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, pp. 46–57 (1992). [CrossRef]
- At each surface, the partial sums of Eq. (4.A.1) must be computed in a specific manner to ensure that the boundary condition is satisfied. The nth partial sum for a reflected flux consists of the i=0,±1,…,±n terms, while the nth partial sum for a transmitted flux is the sum of the i=0,±1,…,±(n-1),+n terms. Under this procedure, the calculated |J(x, 0, 0)| arising from the source at depth z0 is nearly equal to the |J(x, 0, Z)| arising from the source at Z-z0, as expected.
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in fortran, 2nd ed. (Cambridge U. Press, New York, 1992), Chap. 15, pp. 678–683.
- PSI-PlotTM Version 4 for WindowsTM User’s Handbook (Poly Software International, Salt Lake City, Utah, 1995), Chap. 5, p. 148.
- R. E. Alcouffe, Group XTM, Los Alamos National Laboratory, Los Alamos, N. M. 87545 (personal communication, 1995).
- J. J. Duderstadt, W. R. Martin, Transport Theory (Wiley, New York, 1979), Chap. 2, pp. 69–72.
- E. Beltrami, Mathematical Models in the Social and Biological Sciences (Jones and Bartlett, Boston, Mass., 1993), Chap. 1, pp. 1–19.
- F. A. Grünbaum, “Diffuse tomography: the isotropic case,” Inverse Probl. 8, 409–419 (1992). [CrossRef]
- A. Q. Howard, W. C. Chew, M. C. Moldoveanu, “A new correction to the Born approximation,” IEEE Trans. Geosci. Remote Sens. 28, 394–399 (1990). [CrossRef]
- S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Proceedings of Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, pp. 360–371 (1993). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.