OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 4 — Apr. 1, 1998
  • pp: 962–971

Simulation of light emission from thin-film microcavities

Kristiaan A. Neyts  »View Author Affiliations


JOSA A, Vol. 15, Issue 4, pp. 962-971 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000962


View Full Text Article

Acrobat PDF (339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In light-emitting devices based on thin-film technology, light waves that are partially or totally reflected at interfaces between different materials interfere and influence the angular distribution of the emitted light. For an electrical dipole transition, the radiation pattern is equivalent to that of an electrical dipole antenna. New theoretical expressions are provided for the radiation, discriminating for polarization, emission angle, absorption, and transmission; and the numerical calculation of discrete modes, narrow modes, and evanescent waves near absorbing media is discussed.

© 1998 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(260.2110) Physical optics : Electromagnetic optics
(260.3160) Physical optics : Interference
(310.0310) Thin films : Thin films

Citation
Kristiaan A. Neyts, "Simulation of light emission from thin-film microcavities," J. Opt. Soc. Am. A 15, 962-971 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-4-962


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, and T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, and M. Miller, eds., Proc. SPIE 1910, 212–221 (1993).
  2. T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo- and electroluminescent devices with double mirrors,” Appl. Phys. Lett. 63, 594–595 (1993).
  3. N. E. Hunt, E. F. Schubert, R. Logan, and G. Zydzik, “Enhanced spectral power density and reduced linewidth at 1.3 μm in an InGaAsP quantum well resonant-cavity light emitting diode,” Appl. Phys. Lett. 61, 2287–2289 (1992).
  4. H. De Neve and J. Blondelle, “Resonant cavity LED’s,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 333–342.
  5. N. A. Vlasenko, S. A. Zynyo, and A. Pukhlii, “Investigation of interference effects in thin electroluminescent ZnS-Mn films,” Opt. Spectrosc. 28, 66–71 (1970).
  6. R. H. Mauch, K. A. Neyts, and H.-W. Schock, “Optical behaviour of electroluminescent devices,” in Proceedings of the 4th Workshop on Electroluminescence, Proceedings in Physics 38, S. Shionoya and H. Kobayashi, eds. (Springer-Verlag, Berlin, 1989), pp. 291–295.
  7. G. O. Mueller, R. Mach, E. Alinsog, H. Lee, and D. Harrison, “Microcavity effects in thin film electroluminescence,” in Proceedings of Inorganic and Organic Electro- luminescence/EL 96 Berlin, R. H. Mauch and H.-E. Gumlich, eds. (Wissenschaft und Technik Verlag, Berlin, 1996), pp. 399–402.
  8. R. Holm, S. McKnight, E. Palik, and W. Lukosz, “Interference effects in luminescence studies of thin films,” Appl. Opt. 21, 2512–2519 (1982).
  9. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface,” J. Opt. Soc. Am. 67, 1607–1619 (1977).
  10. W. Lukosz and R. E. Kunz, “Changes in fluorescence lifetimes induced by variation of the radiating molecules’ optical environment,” Opt. Commun. 31, 42–46 (1979).
  11. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030–3038 (1980).
  12. W. Lukosz, “Light emission by multipole sources in thin layers,” J. Opt. Soc. Am. 71, 744–754 (1981).
  13. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
  14. G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
  15. S.-T. Ho, D. Chu, J.-P. Zhang, and M.-K. Chin, “Dielectric photonic wells and wires of spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 10.
  16. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).
  17. H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, and L. Roux, “Dielectric thin films for microcavity applications,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, 1996), pp. 427–442.
  18. S. Brorson and P. Skovgaard, “Optical mode density and spontaneous emission in microcavities,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 2.
  19. K. Neyts, “Cavity effects in thin film phosphors based on ZnS,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 397–406.
  20. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
  21. K. Neyts, “Thin film microcavities for display applications,” in Conference Record of the 17th International Display Research Conference, J. Morreale, ed. (Society for Information Display, Santa Ana, Calif., 1997), pp. 421–424.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited