OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 4 — Apr. 1, 1998
  • pp: 978–992

Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery

David G. Sheppard, Bobby R. Hunt, and Michael W. Marcellin  »View Author Affiliations


JOSA A, Vol. 15, Issue 4, pp. 978-992 (1998)
http://dx.doi.org/10.1364/JOSAA.15.000978


View Full Text Article

Enhanced HTML    Acrobat PDF (2489 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The subject of interest is the superresolution of atmospheric-turbulence-degraded, short-exposure imagery, where superresolution refers to the removal of blur caused by a diffraction-limited optical system along with recovery of some object spatial-frequency components outside the optical passband. Photon-limited space object images are of particular interest. Two strategies based on multiple exposures are explored. The first is known as deconvolution from wave-front sensing, where estimates of the optical transfer function (OTF) associated with each exposure are derived from wave-front-sensor data. New multiframe superresolution algorithms are presented that are based on Bayesian maximum a posteriori and maximum-likelihood formulations. The second strategy is known as blind deconvolution, in which the OTF associated with each frame is unknown and must be estimated. A new multiframe blind deconvolution algorithm is presented that is based on a Bayesian maximum-likelihood formulation with strict constraints incorporated by using nonlinear reparameterizations. Quantitative simulation of imaging through atmospheric turbulence and wave-front sensing are used to demonstrate the superresolution performance of the algorithms.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.7060) Atmospheric and oceanic optics : Turbulence
(100.0100) Image processing : Image processing

History
Original Manuscript: May 28, 1997
Revised Manuscript: October 13, 1997
Manuscript Accepted: October 27, 1997
Published: April 1, 1998

Citation
David G. Sheppard, Bobby R. Hunt, and Michael W. Marcellin, "Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery," J. Opt. Soc. Am. A 15, 978-992 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-4-978


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  2. P. J. Sementilli, B. R. Hunt, M. S. Nadar, “Analysis of the limit to superresolution in incoherent imaging,” J. Opt. Soc. Am. A 10, 2265–2276 (1993). [CrossRef]
  3. D. O. Walsh, P. A. Delaney, M. W. Marcellin, “Non-iterative implementation of a class of iterative signal restoration algorithms,” in Proceedings of the International Conference on Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 1672–1675.
  4. R. W. Gerchberg, “Superresolution through error energy reduction,” Opt. Acta 21, 709–720 (1974). [CrossRef]
  5. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  6. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–759 (1974). [CrossRef]
  7. T. J. Holmes, “Maximum likelihood image restoration adapted for noncoherent imaging,” J. Opt. Soc. Am. A 5, 666–673 (1988). [CrossRef]
  8. B. R. Hunt, P. J. Sementilli, “Description of a Poisson imagery superresolution algorithm,” in Astronomical Data Analysis Software and Systems I, D. Worral, C. Biemesderfer, J. Barnes, eds. (Astronomy Society of the Pacific, San Francisco, Calif., 1992), pp. 196–199.
  9. E. S. Meinel, “Origins of linear and nonlinear recursive restoration algorithms,” J. Opt. Soc. Am. A 3, 787–799 (1986). [CrossRef]
  10. B. R. Hunt, “Superresolution of images: algorithms, principles, performance,” Int. J. Imaging Syst. Technol. 6, 297–304 (1995). [CrossRef]
  11. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. XIX, pp. 281–376.
  12. M. C. Roggeman, B. Welsh, Imaging Through Turbulence (CRC, New York, N.Y., 1996).
  13. D. Kundur, D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Proc. Mag. 13, 43–64 (1996). [CrossRef]
  14. T. J. Schulz, “Multiframe blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10, 1064–1073 (1993). [CrossRef]
  15. S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993). [CrossRef]
  16. J. C. Christou, E. K. Hege, S. M. Jefferies, “Speckle deconvolution imaging using an iterative algorithm,” in Advanced Imaging Technologies and Commercial Applications, N. Clark, J. D. Gonglewski, eds., Proc. SPIE2566, 134–143 (1995). [CrossRef]
  17. E. Thiébaut, J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  19. R. R. Beland, “Propagation through atmospheric optical turbulence,” The Infrared and Electro-Optical Handbook. Vol. 2: Atmospheric Propagation of Radiation, F. G. Smith, ed. (SPIE Optical Engineering Press: Bellingham, Wash., 1993), pp. 157–232.
  20. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  21. J. C. Dainty, “Stellar speckle interferometry,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1983), pp. 256–320.
  22. P. A. Jansson, “Traditional linear deconvolution methods,” in Deconvolution of Images and Spectra, P. A. Jansson, ed. (Academic, New York, 1997).
  23. R. J. Hanisch, R. L. White, “HST image restoration: current capabilities and future prospects,” in Very High Angular Resolution Imaging, J. G. Robertson, W. J. Tango, eds. (Kluwer, Dordrecht, The Netherlands, 1994), pp. 61–69.
  24. R. J. Hanisch, R. L. White, R. L. Gilliland, “Deconvolution of Hubble Space Telescope images and spectra,” in Deconvolution of Images and Spectra, P. A. Jansson, ed. (Academic, New York, 1997).
  25. H.-M. Adorf, R. N. Hook, L. B. Lucy, “HST image restoration developments at the ST-ECF,” Int. J. Imaging Syst. Technol. 6, 339–349 (1995). [CrossRef]
  26. H.-M. Adorf, “Hubble Space Telescope image restoration in its fourth year,” Inverse Probl. 11, 639–653 (1995). [CrossRef]
  27. P. A. Jansson, “Modern constrained nonlinear methods,” in Deconvolution of Images and Spectra, P. A. Jansson, ed. (Academic, New York, 1997).
  28. A. Labeyrie, “Attainment of diffraction-limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).
  29. K. T. Knox, B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J. 193, L45–48 (1974). [CrossRef]
  30. A. W. Lohman, G. Weigelt, B. Wirnitzer, “Speckle masking in astronomy: triple correlation theory and applications,” Appl. Opt. 22, 4028–4037 (1983). [CrossRef]
  31. G. R. Ayers, M. J. Northcott, J. C. Dainty, “Knox–Thompson and triple correlation imaging through atmospheric turbulence,” J. Opt. Soc. Am. A 5, 963–985 (1988). [CrossRef]
  32. L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47, 24–31 (1994). [CrossRef]
  33. T. E. Bell, “Electronics and the stars,” IEEE Spectr. 32, 16–24 (1995). [CrossRef]
  34. J. C. Christou, “Blind deconvolution post-processing of images corrected by adaptive optics,” in Adaptive Optical Systems and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE2534, 226–234 (1995). [CrossRef]
  35. E. K. Hege, J. R. P. Angel, M. Cheselka, M. Lloyd–Hart, “Simulation of aperture synthesis with the Large Binocular Telescope,” in Advanced Imaging Technologies and Commercial Applications, N. Clark, J. D. Gonglewski, eds., Proc. SPIE2566, 144–155 (1995). [CrossRef]
  36. J.-M. Conan, V. Michau, G. Rousset, “Signal-to-noise ratio and bias of various deconvolution from wavefront sensing estimators,” Image Propagation through the Atmosphere, L. R. Bissonnette, C. Dainty, eds., Proc. SPIE2828, 332–339 (1996). [CrossRef]
  37. A. V. Oppenheim, R. W. Schafer, T. G. Stockham, “Nonlinear filtering of multiplied and convolved signals,” Proc. IEEE 56, 1264–1291 (1968). [CrossRef]
  38. T. G. Stockham, T. M. Cannon, R. B. Ingebretsen, “Blind deconvolution through digital signal processing,” Proc. IEEE 63, 678–692 (1975). [CrossRef]
  39. R. G. Lane, R. H. T. Bates, “Automatic multidimensional deconvolution,” J. Opt. Soc. Am. A 4, 180–188 (1987). [CrossRef]
  40. B. L. Satherly, P. J. Bones, “Zero tracks for blind deconvolution of blurred ensembles,” Appl. Opt. 33, 2197–2205 (1994). [CrossRef]
  41. P. J. Bones, C. R. Parker, B. L. Satherly, R. W. Watson, “Deconvolution and phase retrieval with use of zero sheets,” J. Opt. Soc. Am. A 12, 1842–1857 (1995). [CrossRef]
  42. G. R. Ayers, J. C. Dainty, “Iterative blind deconvolution method and its applications,” Opt. Lett. 13, 547–549 (1988). [CrossRef]
  43. B. L. K. Davey, R. G. Lane, R. H. T. Bates, “Blind deconvolution of noisy complex-valued image,” Opt. Commun. 69, 353–356 (1989). [CrossRef]
  44. F. Tsumuraya, N. Miura, N. Baba, “Iterative blind deconvolution method using Lucy’s algorithm,” Astron. Astrophys. 282, 699–708 (1994).
  45. T. J. Holmes, “Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach,” J. Opt. Soc. Am. A 9, 1052–1061 (1992). [CrossRef] [PubMed]
  46. R. G. Lane, “Blind deconvolution of speckle images,” J. Opt. Soc. Am. A 9, 1508–1514 (1992). [CrossRef]
  47. Y. Biraud, “A new approach for increasing the resolving power by data processing,” Astron. Astrophys. 1, 124–127 (1969).
  48. P. J. Sementilli, “Suppression of artifacts in super-resolved images,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1993).
  49. M. Hanke, Conjugate-Gradient Type Methods for Ill-Posed Problems (Wiley, New York, 1995).
  50. J. R. Shewchuk, “An introduction to the conjugate-gradient method without the agonizing pain,” (Carnegie Mellon University, School of Computer Science, Pittsburgh, Pa., 1994).
  51. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1988).
  52. M. C. Roggeman, B. L. Ellerbroek, T. A. Rhoadarmer, “Widening the effective field of view of adaptive-optics telescopes by deconvolution from wave-front sensing: average and signal-to-noise ratio performance,” Appl. Opt. 34, 1432–1444 (1995). [CrossRef]
  53. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207–211 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited