OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 5 — May. 1, 1998
  • pp: 1077–1083

Image restoration based on Good’s roughness penalty with application to fluorescence microscopy

Peter J. Verveer and Thomas M. Jovin  »View Author Affiliations

JOSA A, Vol. 15, Issue 5, pp. 1077-1083 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present efficient algorithms for image restoration by means of Good’s roughness penalty. We assume Gaussian or Poisson statistics for the noise and derive an algorithm for each case. Performance is tested by simulated three-dimensional imaging with a fluorescence confocal laser scanning microscope. Results are compared with those for algorithms that use Gaussian or entropy penalty terms, which we derived previously [J. Opt. Soc. Am. A 14, 1696 (1997)]. The algorithms based on Good’s roughness yield superior results. An example is given of the restoration of an image of a biological specimen.

© 1998 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(100.6890) Image processing : Three-dimensional image processing
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy

Original Manuscript: October 13, 1997
Revised Manuscript: December 24, 1997
Manuscript Accepted: January 7, 1997
Published: May 1, 1998

Peter J. Verveer and Thomas M. Jovin, "Image restoration based on Good’s roughness penalty with application to fluorescence microscopy," J. Opt. Soc. Am. A 15, 1077-1083 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Agard, Y. Hiraoka, P. Shaw, J. W. Sedat, “Fluorescence microscopy in three dimensions,” in Methods in Cell Biology, D. L. Taylor, Y. Wang, eds. (Academic, San Diego, Calif., 1989), Vol. 3, pp. 353–377.
  2. A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B 39, 1–38 (1977).
  3. T. J. Holmes, “Maximum-likelihood image restoration adapted for noncoherent optical imaging,” J. Opt. Soc. Am. A 5, 666–673 (1988). [CrossRef]
  4. T. J. Holmes, Y.-H. Liu, “Acceleration of maximum-likelihood image restoration for fluorescence microscopy and other noncoherent imagery,” J. Opt. Soc. Am. A 8, 893–907 (1991). [CrossRef]
  5. W. A. Carrington, “Image restoration in 3D microscopy with limited data,” in Bioimaging and Two-Dimensional Spectroscopy, L. C. Smith, ed., Proc. SPIE1205, 72–83 (1990). [CrossRef]
  6. W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268, 1483–1487 (1995). [CrossRef] [PubMed]
  7. R. L. Lagendijk, “Iterative Identification and Restoration of Images,” Ph.D. dissertation (Delft Technical University, Delft, The Netherlands, 1990).
  8. H. T. M. van der Voort, K. C. Strasters, “Restoration of confocal images for quantitative image analysis,” J. Microsc. 178, 165–181 (1995). [CrossRef]
  9. P. J. Verveer, T. M. Jovin, “Acceleration of the ICTM image restoration algorithm,” J. Microsc. 188, 191–195 (1997). [CrossRef]
  10. P. J. Verveer, T. M. Jovin, “Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy,” J. Opt. Soc. Am. A 14, 1696–1706 (1997). [CrossRef]
  11. S. Joshi, M. I. Miller, “Maximum a posteriori estimation with Good’s roughness for three-dimensional optical-sectioning microscopy,” J. Opt. Soc. Am. A 10, 1078–1085 (1993). [CrossRef] [PubMed]
  12. M. Bertero, P. Boccacci, “Regularization methods in image restoration: an application to HST images,” Int. J. Imaging Syst. Technol. 6, 376–386 (1995). [CrossRef]
  13. T. M. Jovin, D. J. Arndt-Jovin, “Luminescence digital imaging microscopy,” Annu. Rev. Biophys. Chem. 18, 271–308 (1989). [CrossRef]
  14. I. J. Good, “Nonparametric roughness penalties for probability densities,” Biometrika 58, 255–277 (1971). [CrossRef]
  15. D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London, Ser. B 207, 187–217 (1980). [CrossRef]
  16. L. J. van Vliet, “Grey-scale measurements in multi-dimensional digitized images,” Ph.D. dissertation, (Delft Technical University, Delft, The Netherlands, 1993).
  17. P. J. Verveer, G. M. P. van Kempen, T. M. Jovin, “Super-resolution MAP algorithms applied to fluorescence imaging,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J.-A. Conchello, T. Wilson, eds., Proc. SPIE2984, 125–135 (1997). [CrossRef]
  18. H. T. M. van der Voort, G. J. Brakenhoff, “3-D image formation in a high-aperture fluorescence confocal microscope: a numerical analysis,” J. Microsc. 158, 43–54 (1990). [CrossRef]
  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited