OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 5 — May. 1, 1998
  • pp: 1423–1435

Localization of light in lossless inhomogeneous dielectrics

Alexander Figotin and Abel Klein  »View Author Affiliations

JOSA A, Vol. 15, Issue 5, pp. 1423-1435 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The localization of electromagnetic waves in lossless inhomogeneous dielectric media is studied. We consider a three-dimensional lossless periodic medium (photonic crystal) having a gap in the frequency spectrum (photonic bandgap). If such a medium is perturbed by either a single defect or a random array of defects, exponentially localized electromagnetic waves arise with frequencies in the gap. For a single defect, we derive equations for these midgap frequencies and estimate their number. For a random medium, we show the occurrence of Anderson localization for electromagnetic waves.

© 1998 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.7420) Other areas of optics : Waves

Original Manuscript: September 3, 1997
Revised Manuscript: November 21, 1997
Manuscript Accepted: December 2, 1997
Published: May 1, 1998

Alexander Figotin and Abel Klein, "Localization of light in lossless inhomogeneous dielectrics," J. Opt. Soc. Am. A 15, 1423-1435 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. W. Anderson, “A question of classical localization. A theory of white paint,” Philos. Mag. B 53, 505–509 (1985). [CrossRef]
  2. P. Sheng, ed., Scattering and Localization of Classical Waves (World Scientific, Singapore, 1990).
  3. S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991). [CrossRef]
  4. S. John, “The localization of light,” in Photonic Band Gaps and Localization, C. M. Soukoulis, ed., Vol. 308 of NATO ASI Ser. B. (Plenum, New York, 1993), pp. 1–22. [CrossRef]
  5. R. Meade, D. Brommer, A. Rappe, J. Joannopoulos, “Photonic bound states in periodic materials,” Phys. Rev. Lett. 67, 3380–3384 (1991).
  6. J. Rarity, C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer Academic, Dordrecht, The Netherlands, 1995).
  7. C. Soukoulis, ed., Photonic Band Gap Materials (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  8. A. Figotin, A. Klein, “Localization of electromagnetic and acoustic waves in random media. Lattice model,” J. Stat. Phys. 76, 985–1003 (1994). [CrossRef]
  9. A. Figotin, A. Klein, “Localization of classical waves II: Electromagnetic waves,” Commun. Math. Phys. 184, 411–441 (1997). [CrossRef]
  10. A. Figotin, A. Klein, “Localized classical waves created by defects,” J. Stat. Phys. 86, 165–177 (1997). [CrossRef]
  11. A. Figotin, A. Klein, “Midgap defect modes in dielectric and acoustic media,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. (to be published).
  12. Special issue on development and applications of materials exhibiting photonic bandgaps, J. Opt. Soc. Am. B 10, 279–413 (1993).
  13. P. R. Villeneuve, M. Piché, “Photonic band gaps in periodic dielectric structures,” Prog. Quantum Electron. 18, 153–200 (1994). [CrossRef]
  14. P. M. Hui, N. F. Johnson, “Photonic band-gap materials,” in Solid State Physics, H. Ehrenreich, F. Spaepen, eds. (Academic, New York, 1995), Vol. 49, pp. 151–203.
  15. P. R. Villeneuve, J. Joannopoulos, “Working at the speed of light,” Sci. Spectra 9, 18–24 (1997).
  16. J. Joannopoulos, R. Meade, J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  17. C. Soukoulis, ed., Photonic Band Gaps and Localization (Plenum, New York, 1993).
  18. E. Yablonovitch, T. Gmitter, R. Meade, D. Brommer, A. Rappe, J. Joannopoulos, “Donor and acceptor modes in photonic periodic structure,” Phys. Rev. B 44, 13772–13774 (1991).
  19. A. Figotin, P. Kuchment, “Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 56, 68–88 (1996). [CrossRef]
  20. A. Figotin, P. Kuchment, “Band-gap structure of spectra of periodic dielectric and acoustic media. II. 2D photonic crystals,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 56, 1561–1620 (1996). [CrossRef]
  21. P. W. Anderson, “Absence of diffusion in certain random lattice,” Phys. Rev. 109, 1492–1505 (1958). [CrossRef]
  22. B. Shklovskii, A. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Heidelberg, 1984).
  23. I. M. Lifshits, S. A. Greduskul, L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).
  24. J. Fröhlich, T. Spencer, “Absence of diffusion in the Anderson tight binding model for large disorder or low energy,” Commun. Math. Phys. 88, 151–184 (1983). [CrossRef]
  25. J. Fröhlich, F. Martinelli, E. Scoppola, T. Spencer, “Constructive proof of localization in the Anderson tight binding model,” Commun. Math. Phys. 101, 21–46 (1985). [CrossRef]
  26. H. Holden, F. Martinelli, “On absence of diffusion near the bottom of the spectrum for a random Schrödinger operator on L2(ℝν),” Commun. Math. Phys. 93, 197–217 (1984). [CrossRef]
  27. H. Cycon, R. Froese, W. Kirsch, B. Simon, Schrödinger Operators (Springer-Verlag, Heidelberg, 1987).
  28. H. Dreifus, A. Klein, “A new proof of localization in the Anderson tight binding model,” Commun. Math. Phys. 124, 285–299 (1989). [CrossRef]
  29. R. Carmona, J. Lacroix, Spectral Theory of Random Schrödinger Operators (Birkhäuser, Boston, Mass., 1990).
  30. L. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer-Verlag, Heidelberg, 1991).
  31. J. Combes, P. Hislop, “Localization for some continuous, random Hamiltonians in d-dimensions,” J. Funct. Anal. 124, 149–180 (1994). [CrossRef]
  32. A. Figotin, A. Klein, “Localization phenomenon in gaps of the spectrum of random lattice operators,” J. Stat. Phys. 75, 997–1021 (1994). [CrossRef]
  33. A. Figotin, A. Klein, “Localization of classical waves I: Acoustic waves,” Commun. Math. Phys. 180, 439–482 (1996). [CrossRef]
  34. J. Maynard, “Acoustic Anderson localization,” in Random Media and Composites, B. V. Kohn, G. W. Milton, eds., (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1988), pp. 206–207.
  35. W. Kohler, G. Papanicolaou, B. White, “Localization and mode conversion for elastic waves in randomly layered media,” Wave Motion 23, 1–22 and 181–201 (1996). [CrossRef]
  36. A. Maradudin, E. Montroll, G. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1963).
  37. L. Deych, A. Lisyansky, “Impurity localization of electromagnetic waves in polariton region,” Phys. Rev. Lett. (to be published).
  38. Research done by F. Klopp on Internal Lifshits tails for random perturbations of periodic Schrödinger operators.
  39. L. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968).
  40. M. Reed, B. Simon, Analysis of Operators, Vol. 4 of Methods of Modern Mathematical Physics (Academic, New York, 1978).
  41. M. Klaus, “Some applications of the Birman–Schwinger principle,” Helv. Phys. Acta 55, 49–68 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited