OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 6 — Jun. 1, 1998
  • pp: 1486–1499

Spatial-frequency tuning of visual contour integration

S. C. Dakin and R. F. Hess  »View Author Affiliations

JOSA A, Vol. 15, Issue 6, pp. 1486-1499 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (1595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the mechanism that subserves visual contour detection and particularly its tuning for the spatial frequency of contour components. We measured the detection of contours composed of Gabor micropatterns within a field of randomly oriented distractor elements. Distractors were randomly assigned one of two spatial frequencies, and elements lying along the contour alternated between these values. We report that the degree of tolerable spatial-frequency difference between successive contour elements is inversely proportional to the orientation difference between them. Spatial-frequency tuning (half-width at half-height) for straight contours is 1.3 octaves but, for contours with a 30° difference between successive elements, drops to 0.7 octaves. Integration of curved contours operates at a narrower bandwidth. Much orientation information in natural images arises from edges, and we propose that this narrowing of tuning is related to the reduction in interscale support that accompanies increasing edge curvature.

© 1998 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.7310) Vision, color, and visual optics : Vision

Original Manuscript: October 14, 1997
Revised Manuscript: January 29, 1998
Manuscript Accepted: January 30, 1998
Published: June 1, 1998

S. C. Dakin and R. F. Hess, "Spatial-frequency tuning of visual contour integration," J. Opt. Soc. Am. A 15, 1486-1499 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field, ” Vision Res. 33, 173–193 (1993). [CrossRef] [PubMed]
  2. I. Kovacs, B. Julesz, “A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation,” Proc. Natl. Acad. Sci. USA 90, 7495–7497 (1993). [CrossRef] [PubMed]
  3. I. Kovacs, B. Julesz, “Perceptual sensitivity maps within globally defined visual shapes,” Nature 370, 644–646 (1994). [CrossRef] [PubMed]
  4. J. T. Smits, P. G. Vos, “The perception of continuous curves in dot stimuli,” Perception 16, 121–131 (1987). [CrossRef] [PubMed]
  5. Z. Pizlo, M. Salach-Golyska, A. Rosenfeld, “Curve detection in a noisy image,” Vision Res. 37, 1217–1241 (1997). [CrossRef] [PubMed]
  6. L. Glass, “Moiré effects from random dots,” Nature 243, 578–580 (1969). [CrossRef]
  7. T. Caelli, B. Julesz, “Psychophysical evidence for global feature processing in visual texture discrimination,” J. Opt. Soc. Am. 69, 675–678 (1979). [CrossRef] [PubMed]
  8. S. C. Dakin, “The detection of structure in Glass patterns: psychophysics and computational models,” Vision Res. 37, 2227–2259 (1997). [CrossRef] [PubMed]
  9. R. F. Hess, D. J. Field, “Contour integration across depth,” Vision Res. 35, 1699–1711 (1995). [CrossRef] [PubMed]
  10. S. W. Zucker, “Early orientation selection: tangent fields and the dimensionality of their support,” Comput. Vis. Graph. Image Process. 8, 71–77 (1985).
  11. S. W. Zucker, C. David, A. Dobbins, L. Iverson, “The organization of curve detection: coarse tangent fields and fine spline coverings,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1988).
  12. P. Parent, S. W. Zucker, “Trace inference, curvature consistency and curve-detection,” IEEE Trans. Pattern. Anal. Mach. Intell. 11, 823–839 (1989). [CrossRef]
  13. S. W. Zucker, A. Dobbins, L. Iverson, “Two stages of curve detection suggest two styles of visual computation,” Neural Computation 1, 68–81 (1989). [CrossRef]
  14. A. Sha’ashua, S. Ullman, “Structural saliency: the detection of globally salient structures using a locally connected network,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1988), pp. 321–327.
  15. S.-C. Yen, L. H. Finkel, “Salient contour extraction by temporal binding in a cortically based network,” in Advances in Neural Information Processing Systems, D. S. Touretzky, M. C. Mozer, M. E. Hasselmo, eds. (MIT Press, Cambridge, Mass., 1996).
  16. S.-C. Yen, L. H. Finkel, “Cortical synchronization mechanism for ‘pop-out’ of salient image contours,” in The Neurobiology of Computation, J. Bower, ed. (Kluwer Academic, Boston, Mass., 1996).
  17. W. H. Freeman, E. H. Adelson, “The design and use of steerable filters,” IEEE Trans. Pattern. Anal. Mach. Intell. 13, 891–906 (1991). [CrossRef]
  18. U. Polat, D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994). [CrossRef] [PubMed]
  19. R. F. Hess, S. C. Dakin, D. J. Field, “The role of ‘contrast enhancement’ in the detection and appearance of visual contours,” Vision Res. 38, 783–787 (1998). [CrossRef] [PubMed]
  20. Z. Gigus, J. Malik, “Detecting curvilinear structure in images,” (University of California Berkeley, Berkeley, Calif., 1991).
  21. D. J. Field, “Scale-invariance and self-similar ‘wavelet’ transforms: an analysis of natural scenes and mammalian visual systems,” in Wavelets, Fractals and Fourier Transforms, M. Marge, J. C. R. Hunt, J. C. Vassilicos, eds. (Clarendon, Oxford, UK, 1993), pp. 151–193.
  22. D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980). [CrossRef]
  23. D. Marr, Vision (Freeman, San Francisco, Calif., 1982).
  24. J. F. Canny, “Finding edges and lines in images,” (Massachusetts Institute of Technology, Boston, Mass., 1983).
  25. D. G. Lowe, “Organization of smooth image curves at multiple spatial scales,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1988), pp. 119–130.
  26. A. Hayes, “Representation by images restricted in resolution and intensity range,” Ph.D. dissertation (University of Western Australia, Perth, Australia1989).
  27. L. D. Harmon, B. Julesz, “Masking in visual recognition: effects of two dimensional filtered noise,” Science 180, 1194–1197 (1973). [CrossRef] [PubMed]
  28. M. C. Morrone, D. C. Burr, “Capture and transparency in coarse quantized images,” Vision Res. 37, 2609–2629 (1997). [CrossRef] [PubMed]
  29. S. J. M. Rainville, F. A. A. Kingdom, A. Hayes, “Is motion perception sensitive to local phase structures?” Invest. Ophthalmol. Visual Sci. 38, S215 (1997).
  30. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming number into movies,” Spatial Vis. 10, 437–442 (1997). [CrossRef]
  31. W. H. McIlhagga, K. T. Mullen, “Contour integration with colour and luminance contrast,” Vision Res. 36, 1265–1279 (1996). [CrossRef] [PubMed]
  32. R. F. Hess, S. C. Dakin, “Absence of contour linking in peripheral vision,” Nature 390, 602–604 (1997). [CrossRef] [PubMed]
  33. D. W. Heeley, H. M. Buchanan-Smith, “Recognition of stimulus orientation,” Vision Res. 32, 719–743 (1990).
  34. P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex: III. Spatial frequency, J. Neurophysiol. 39, 1334–1351 (1976). [PubMed]
  35. J. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurones in area 17 and 18 of the cat’s visual cortex,” J. Physiol. (London) 283, 101–120 (1978).
  36. J. J. Kulikowski, P. O. Bishop, “Linear analysis of the responses of simple cells in the cat visual cortex,” Exp. Brain Res. 44, 386–400 (1981). [CrossRef] [PubMed]
  37. D. J. Tolhurst, I. D. Thompson, “On the variety of spatial frequency selectivities shown by neurons in area 17 of the cat,” Proc. R. Soc. London Ser. B 213, 183–199 (1981). [CrossRef]
  38. R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982). [CrossRef] [PubMed]
  39. D. J. Field, D. J. Tolhurst, “The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex,” Proc. R. Soc. London Ser. B 228, 379–400 (1986). [CrossRef]
  40. D. J. Field, A. Hayes, R. F. Hess, “The role of phase and contrast polarity in contour integration,” Invest. Ophthalmol. Visual Sci. 38, S999 (1997).
  41. M. W. Pettet, S. P. McKee, N. M. Grzywacz, “Smoothness constrains long-range interactions mediating contour-detection,” Invest. Ophthalmol. Visual Sci. 37, 4368 (1996).
  42. Gabor filters had 1:1 envelopes, with a wavelength equal to 1.5σ, and were in cosine phase. Their outputs were weighted by 1/f.
  43. R. J. Watt, M. J. Morgan, “A theory of the primitive spatial code in human vision,” Vision Res. 25, 1661–1674 (1985). [CrossRef] [PubMed]
  44. B. A. Olshausen, D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for naturla images,” Nature 381, 607–609 (1996). [CrossRef] [PubMed]
  45. A. J. Bell, T. J. Sejnowski, “The ‘independent components’ of natural scenes are edge filters,” Vision Res. 37, 3327–3338 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited